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Take Seq2Seq as an exemplary example

• We have a sequence of hidden vectors
◦ In general: hi ∈ RH for any input sequences
◦ In this case: ei, fj ∈ RH are the blue and red states

• Can hook up softmax heads to these ei and fj to make predictions.
• How can we train the RNN to make such predictions?
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Hidden States

• Inputs: the words. You need both English and French words.
◦ how, are, you, ?, 〈s〉, comment, allez, -, vous, ?, 〈s〉

• Word embeddings: look up the words in saved dictionaries
◦ x1, x2, x3, x4, y1, y2, y3, y4, y5, y6 ∈ RD

• Recurrent Computations: f is your chosen RNN function such
as LSTM or GRU. What are the shapes of each output?
◦ Encoder: e0 = 0; et = f(xt, et−1)
◦ Decoder: f0 = elast; ft = f(yt, ft−1)
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Loss Function

• Predictions: Let Wsoft ∈ RH×vocab size be trainable parameters

p(yt|y<t,x) = Softmax(ft−1 ·Wsoft), for t = 2, 3, ..., |y| (1)

p(y|x) =
|y|∏
t=2

p(yt|y<t,x) (2)

• Loss function: The canonical cross-entropy loss

L = −y log ŷ = −
|ŷ|∑
t=1

yt log ŷt (3)

Note: Loss of one sample (sentence) is the sum of all steps.
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Attention: Important Technique

• Recurrent Computations: f is your chosen RNN function
◦ Encoder: e0 = 0; et = f(xt, et−1); Decoder: f0 = e4; ft = f(yt, ft−1)

• Predictions: previously without attention

p(yt|y<t,x) = Softmax(ft−1 ·Wsoft), for t = 2, 3, ..., |y| (4)

• Predictions: now with attention

p(yt|y<t,x) = Softmax(a(ft−1, e1···|x|) ·Wsoft) (5)
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Attention

• Predictions: now with attention

p(yt|y<t,x) = Softmax(a(ft−1, e1···|x|) ·Wsoft) (6)

• Attention: how is a(f , e1···|x|) computed?

αi = g(f , ei); s = Softmax(α1···|x|); a(f , e1···|x|) =
|x|∑
i=1

siei (7)
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Attention

• Attention: how is a(f , e1···|x|) computed?

αi = g(f , ei); s = Softmax(α1···|x|); a(f , e1···|x|) =
|x|∑
i=1

siei

• Choices of g:
◦ Bahdanau attention1: g(f , ei) = tanh (f ·wf + ei−1 ·we) · v, where

wf ,we ∈ RH×H and v ∈ RH×1 are trainable parameters
◦ Luong attention2: g(f , ei) = f · e>i (dot type)

1
https://arxiv.org/pdf/1409.0473.pdf

2
https://arxiv.org/pdf/1508.04025.pdf
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Backprop Through Time (BPTT)

• Even with attention, the overall RNN is fundamentally the same
• Training is called BPTT but it’s basically Backprop with:

◦ Gradient of a weight is a sum of all timesteps’ gradients
◦ It’s the same if we follow the chain rule
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Training Summary

• We have defined a computational graph
◦ which is a composition of RNN functions

• Thus we can use back-propagation to compute the gradients
◦ which is just the chain rule (yet it’s called BPTT)

• Model parameters consist of:
◦ Word embedding params
◦ Wsoft

◦ Any parameters of the recurrent function f

• During training, we feed ground truth to guide (teacher-forcing)
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How to Translate with a Trained RNN?

• Goes step-by-step, based on your own predictions

• Can we use bidirectional RNNs for encoder?
• How about decoder?
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Decoding method: Greedy

• Always take top 1

• But fast starter might be a straggler later
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What If You Are Wrong?

• You live with your mistakes
• Or have other methods
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Decoding method: Beam Search

• Beam search: maintain multiple top paths
◦ Canonical method in decoding
◦ Keep top k with k > 1 at every step

• Greedy is a special case where k = 1
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Summary: Training and Evaluation

• Training with Teacher-Forcing
◦ Encoder: directly use the encoder, simple!
◦ Decoder: using “teacher” mode, for every token

• Evaluation
◦ No teacher anymore
◦ Collect attention weights: |f | × |e| and plot them if needed
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General Strategy: Dropout

• Each colored represents each possibility to be “dropped-out”
◦ Word embeddings dropout mean to remove the whole word

• Input, output, embedding (vertical) or recurrent (horizontal)?
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Non-recurrent Dropout3

• Only apply to non-recurrent to leave RNN “memory” intact
• Works, but not so well ...

3
https://arxiv.org/pdf/1409.2329.pdf
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Variational Dropout4

• To recurrent connections as well, shown better than naive way
• Same mask for input, output and recurrent connections at each

time step
• This dropout is shown to be similar to variational appx (Bayesian

interpretation)
4

https://arxiv.org/pdf/1512.05287.pdf
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Example: Google Neural Machine Translation5

• Enormous, distributed, 1024 nodes for all RNN layers
• First 2 layers: bidirectional RNNs
• 4th - 8th layers: residual connections added
• Attention network: single hidden FC 1024
5

https://arxiv.org/pdf/1609.08144v2.pdf
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Resources

• API: tf.keras.layers.LSTM

• API: tf.keras.layers.GRU

• Tutorial: Build RNNs with tf.keras

• Tutorial: Time series forecasting with RNNs

• Tutorial: Text classification with RNNs

• Tutorial: NMT with Attention
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https://www.tensorflow.org/api_docs/python/tf/keras/layers/LSTM
https://www.tensorflow.org/api_docs/python/tf/keras/layers/GRU
https://www.tensorflow.org/guide/keras/rnn
https://www.tensorflow.org/tutorials/structured_data/time_series
https://www.tensorflow.org/tutorials/text/text_classification_rnn
https://www.tensorflow.org/tutorials/text/nmt_with_attention
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