11-695: AI Engineering Recurrent Neural Networks II

LTI/SCS

Spring 2020

LTI/SCS

11-695: AI Engineering

Spring 2020 1 / 23

1 Neural Machine Translation: Training

2 Neural Machine Translation: Testing

3 Regularization

LTI/SCS

11-695: AI Engineering

Spring 2020 2 / 23

Take Seq2Seq as an exemplary example Carnegie Mellon

- We have a sequence of hidden vectors
 - In general: $\mathbf{h}_i \in \mathbf{R}^H$ for any input sequences
 - In this case: $\mathbf{e}_i, \mathbf{f}_j \in \mathbf{R}^H$ are the blue and red states
- Can hook up softmax heads to these \mathbf{e}_i and \mathbf{f}_j to make predictions.
- How can we train the RNN to make such predictions?

LTI/SCS

Hidden States

• Inputs: the words. You need *both* English and French words.

 $\circ\,$ how, are, you, ?, $\langle s \rangle,$ comment, allez, -, vous, ?, $\langle s \rangle$

• Word embeddings: look up the words in saved dictionaries

• $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4, \mathbf{y}_1, \mathbf{y}_2, \mathbf{y}_3, \mathbf{y}_4, \mathbf{y}_5, \mathbf{y}_6 \in \mathbb{R}^D$

• **Recurrent Computations:** *f* is your chosen RNN function such as LSTM or GRU. What are the shapes of each output?

• Encoder:
$$\mathbf{e}_0 = 0; \mathbf{e}_t = f(\mathbf{x}_t, \mathbf{e}_{t-1})$$

• Decoder: $\mathbf{f}_0 = \mathbf{e}_{\text{last}}; \mathbf{f}_t = f(\mathbf{y}_t, \mathbf{f}_{t-1})$

LTI/SCS

Spring 2020 4 / 23

Loss Function

1

• Predictions: Let $\mathbf{W}_{\text{soft}} \in \mathbb{R}^{H \times \text{vocab}_{\text{size}}}$ be trainable parameters

$$p(y_t|y_{< t}, \mathbf{x}) = \text{Softmax}(\mathbf{f}_{t-1} \cdot \mathbf{W}_{\text{soft}}), \text{ for } t = 2, 3, ..., |\mathbf{y}|$$
(1)
$$p(\mathbf{y}|\mathbf{x}) = \prod_{t=2}^{|\mathbf{y}|} p(y_t|y_{< t}, \mathbf{x})$$
(2)

• Loss function: The canonical cross-entropy loss

$$\mathcal{L} = -\mathbf{y}\log\hat{\mathbf{y}} = -\sum_{t=1}^{|\hat{\mathbf{y}}|} y_t \log\hat{y}_t$$
(3)

Note: Loss of one sample (sentence) is the sum of all steps.LTI/SCS11-695: AI EngineeringSpring 20205 / 23

Attention: Important Technique

- Recurrent Computations: f is your chosen RNN function • Encoder: $\mathbf{e}_0 = 0$; $\mathbf{e}_t = f(\mathbf{x}_t, \mathbf{e}_{t-1})$; Decoder: $\mathbf{f}_0 = \mathbf{e}_4$; $\mathbf{f}_t = f(\mathbf{y}_t, \mathbf{f}_{t-1})$
- **Predictions:** previously without attention

$$p(y_t|y_{< t}, \mathbf{x}) = \text{Softmax}(\mathbf{f}_{t-1} \cdot \mathbf{W}_{\text{soft}}), \text{ for } t = 2, 3, ..., |\mathbf{y}|$$
(4)

• **Predictions:** now with attention

$$p(y_t|y_{< t}, \mathbf{x}) = \operatorname{Softmax}(\boldsymbol{a}(\mathbf{f}_{t-1}, \mathbf{e}_{1\cdots|\mathbf{x}|}) \cdot \mathbf{W}_{\operatorname{soft}})$$
(5)

LTI/SCS

11-695: AI Engineering

Spring 2020 6 / 23

Attention

• **Predictions:** now with attention

$$p(y_t|y_{< t}, \mathbf{x}) = \text{Softmax}(\mathbf{a}(\mathbf{f}_{t-1}, \mathbf{e}_{1\cdots|\mathbf{x}|}) \cdot \mathbf{W}_{\text{soft}})$$
(6)

• Attention: how is $\mathbf{a}(\mathbf{f}, \mathbf{e}_{1 \dots | \mathbf{x} |})$ computed?

$$\alpha_i = g(\mathbf{f}, \mathbf{e}_i); \ s = \text{Softmax}(\alpha_{1\cdots|\mathbf{x}|}); \ a(\mathbf{f}, \mathbf{e}_{1\cdots|\mathbf{x}|}) = \sum_{i=1}^{|\mathbf{x}|} s_i \mathbf{e}_i \qquad (7)$$

LTI/SCS

11-695: AI Engineering

Spring 2020 7 / 23

Attention

• Attention: how is $\mathbf{a}(\mathbf{f}, \mathbf{e}_{1 \dots |\mathbf{x}|})$ computed?

$$\alpha_i = g(\mathbf{f}, \mathbf{e}_i); \ s = \text{Softmax}(\alpha_{1 \dots |\mathbf{x}|}); \ a(\mathbf{f}, \mathbf{e}_{1 \dots |\mathbf{x}|}) = \sum_{i=1}^{|\mathbf{x}|} s_i \mathbf{e}_i$$

- Choices of g:
 - Bahdanau attention¹: g(f, e_i) = tanh (f ⋅ w_f + e_{i-1} ⋅ w_e) ⋅ v, where w_f, w_e ∈ R^{H×H} and v ∈ ℝ^{H×1} are trainable parameters
 Luong attention²: g(f, e_i) = f ⋅ e_i^T (dot type)

• Luong attention²: $g(\mathbf{f}, \mathbf{e}_i) = \mathbf{f} \cdot \mathbf{e}_i^{\top}$ (dot

https://arxiv.org/pdf/1409.0473.pdf

²https://arxiv.org/pdf/1508.04025.pdf

LTI/SCS

11-695: AI Engineering

Spring 2020 8 / 23

Backprop Through Time (BPTT)

- Even with attention, the overall RNN is fundamentally the same
- Training is called BPTT but it's basically Backprop with:
 - Gradient of a weight is a sum of all timesteps' gradients
 - It's the same if we follow the chain rule

Image credit: Denny Britz

LTI/SCS

11-695: AI Engineering

Spring 2020 9 / 23

- We have defined a computational graph
 - which is a composition of RNN functions

- We have defined a computational graph
 - which is a composition of RNN functions
- Thus we can use back-propagation to compute the gradients
 which is just the chain rule (yet it's called BPTT)

- We have defined a computational graph
 - which is a composition of RNN functions
- Thus we can use back-propagation to compute the gradients
 which is just the chain rule (vet it's called BPTT)
- Model parameters consist of:
 - Word embedding params
 - $\circ \ \mathbf{W}_{\mathrm{soft}}$
 - $\circ~$ Any parameters of the recurrent function ${\bf f}$

LTI/SCS

11-695: AI Engineering

Spring 2020 10 / 23

- We have defined a computational graph
 - which is a composition of RNN functions
- Thus we can use back-propagation to compute the gradients
 - which is just the chain rule (yet it's called BPTT)
- Model parameters consist of:
 - $\circ~$ Word embedding params
 - $\circ \ \mathbf{W}_{\mathrm{soft}}$
 - $\circ~$ Any parameters of the recurrent function ${\bf f}$
- During training, we feed ground truth to guide (teacher-forcing)
 LTI/SCS 11-695: AI Engineering Spring 2020 10 / 23

1 Neural Machine Translation: Training

2 Neural Machine Translation: Testing

3 Regularization

LTI/SCS

How to Translate with a Trained RNN?

• Goes step-by-step, based on your own predictions

LTI/SCS

11-695: AI Engineering

Spring 2020 12 / 23

How to Translate with a Trained RNN?

- Goes step-by-step, based on your own predictions
- Can we use bidirectional RNNs for encoder?

LTI/SCS

11-695: AI Engineering

Spring 2020 12 / 23

How to Translate with a Trained RNN?

- Goes step-by-step, based on your own predictions
- Can we use bidirectional RNNs for encoder?
- How about decoder?

LTI/SCS

11-695: AI Engineering

Spring 2020 12 / 23

Decoding method: Greedy

• Always take top 1

Image credit: Graham Neubig

LTI/SCS

11-695: AI Engineering

Spring 2020 13 / 23

Decoding method: Greedy

- Always take top 1
- But fast starter might be a straggler later

LTI/SCS

11-695: AI Engineering

Image credit: Graham Neubig **D20** 13 / 23

Spring 2020

What If You Are Wrong?

- You live with your mistakes
- Or have other methods

LTI/SCS

11-695: AI Engineering

Spring 2020 14 / 23

Decoding method: Beam Search

- Beam search: maintain multiple top paths
 - Canonical method in decoding
 - $\circ~$ Keep top_k with k>1 at every step
- Greedy is a special case where k = 1

LTI/SCS

11-695: AI Engineering

Image credit: Graham Neubig

Summary: Training and Evaluation

- Training with Teacher-Forcing
 - Encoder: directly use the encoder, simple!
 - Decoder: using "teacher" mode, for *every* token
- Evaluation
 - No teacher anymore
 - $\circ~$ Collect attention weights: $|{\bf f}| \times |{\bf e}|$ and plot them if needed

LTI/SCS

11-695: AI Engineering

Spring 2020 16 / 23

1 Neural Machine Translation: Training

2 Neural Machine Translation: Testing

3 Regularization

LTI/SCS

11-695: AI Engineering

Spring 2020 17 / 23

General Strategy: Dropout

• Each colored represents each possibility to be "dropped-out"

- Word embeddings dropout mean to remove the whole word
- Input, output, embedding (vertical) or recurrent (horizontal)?

Non-recurrent Dropout³

- Only apply to non-recurrent to leave RNN "memory" intact
- Works, but not so well ...

³https://arxiv.org/pdf/1409.2329.pdf Image credit: Wojciech Zaremba *et al.* LTI/SCS **11-695: AI Engineering Spring 2020 19 / 23**

Variational Dropout⁴

- To recurrent connections as well, shown better than naive way
- Same mask for input, output and recurrent connections at each time step
- This dropout is shown to be similar to variational appx (Bayesian interpretation)

 ⁴ https://arxiv.org/pdf/1512.05287.pdf
 Image credit: Wojciech Zaremba et al.

 LTI/SCS
 11-695: AI Engineering
 Spring 2020
 20 / 23

1 Neural Machine Translation: Training

2 Neural Machine Translation: Testing

3 Regularization

Example: Google Neural Machine Translation⁵

- Enormous, distributed, 1024 nodes for all RNN layers
- First 2 layers: bidirectional RNNs
- 4th 8th layers: residual connections added
- Attention network: single hidden FC 1024

⁵https://arxiv.org/pdf/1609.08144v2.pdf LTI/SCS

11-695: AI Engineering

Spring 2020 22 / 23

- API: tf.keras.layers.LSTM
- API: tf.keras.layers.GRU
- Tutorial: Build RNNs with tf.keras
- Tutorial: Time series forecasting with RNNs
- Tutorial: Text classification with RNNs
- Tutorial: NMT with Attention