
11-695: AI Engineering
Other Techniques II

LTI/SCS

Spring 2020

LTI/SCS 11-695: AI Engineering Other Techniques IISpring 2020 1 / 35

Outline

1 Initialization

2 Weights regularization

3 Dropout

LTI/SCS 11-695: AI Engineering Other Techniques IISpring 2020 2 / 35

Initialization of Weights and Biases

• Training NNs is difficult!1

• Weight init has an important role in training NNs

1
http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf

LTI/SCS 11-695: AI Engineering Other Techniques IISpring 2020 3 / 35
Image Credit: Andre Perunicic

http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf

Zero Initialization

• A big NO, would create a symmetry between hidden layers2

• Bias can be initialized zeros, because weights take care of avoiding
symmetry

2
https://arxiv.org/pdf/1206.5533.pdf

LTI/SCS 11-695: AI Engineering Other Techniques IISpring 2020 4 / 35
Image Credit: https://www.deeplearning.ai/ai-notes/initialization/

https://arxiv.org/pdf/1206.5533.pdf
https://www.deeplearning.ai/ai-notes/initialization/

Too small Initialization

• Gradient vanishing problem

LTI/SCS 11-695: AI Engineering Other Techniques IISpring 2020 5 / 35
Image Credit: https://www.deeplearning.ai/ai-notes/initialization/

https://www.deeplearning.ai/ai-notes/initialization/

Too large Initialization

• Gradient exploding problem

LTI/SCS 11-695: AI Engineering Other Techniques IISpring 2020 6 / 35
Image Credit: https://www.deeplearning.ai/ai-notes/initialization/

https://www.deeplearning.ai/ai-notes/initialization/

Proper Initialization

• Would have no such problems

• But what it means by being “proper”
◦ Mean should center around zero
◦ Variance should not shift between layers

LTI/SCS 11-695: AI Engineering Other Techniques IISpring 2020 7 / 35
Image Credit: https://www.deeplearning.ai/ai-notes/initialization/

https://www.deeplearning.ai/ai-notes/initialization/

Proper Initialization

• Would have no such problems
• But what it means by being “proper”

◦ Mean should center around zero
◦ Variance should not shift between layers

LTI/SCS 11-695: AI Engineering Other Techniques IISpring 2020 7 / 35
Image Credit: https://www.deeplearning.ai/ai-notes/initialization/

https://www.deeplearning.ai/ai-notes/initialization/

Proper Initialization

• Would have no such problems
• But what it means by being “proper”

◦ Mean should center around zero
◦ Variance should not shift between layers
LTI/SCS 11-695: AI Engineering Other Techniques IISpring 2020 7 / 35

Image Credit: https://www.deeplearning.ai/ai-notes/initialization/

https://www.deeplearning.ai/ai-notes/initialization/

Random Initialization

• Normally from N(0, σ2)
• Variance matters

LTI/SCS 11-695: AI Engineering Other Techniques IISpring 2020 8 / 35
Image Credit: Daniel Godoy

Random Initialization

• Normally from N(0, σ2)
• Variance matters

LTI/SCS 11-695: AI Engineering Other Techniques IISpring 2020 9 / 35
Image Credit: Daniel Godoy

Random Initialization

• Normally from N (0, σ2)
• Variance matters

LTI/SCS 11-695: AI Engineering Other Techniques IISpring 2020 10 / 35
Image Credit: Daniel Godoy

(Xavier) Glorot Initialization3

• Forward

σ(W) =
√

1
fan in (normal) σ(W) =

√
3

fan in (uniform)

• Backward

σ(W) =
√

1
fan out (normal) σ(W) =

√
3

fan out (uniform)

• Combined:

σ(W) =
√

2
fan in + fan out (normal)

σ(W) =
√

6
fan in + fan out (uniform)

3
http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf

LTI/SCS 11-695: AI Engineering Other Techniques IISpring 2020 11 / 35

http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf

(Xavier) Glorot Initialization

• Normal distribution

LTI/SCS 11-695: AI Engineering Other Techniques IISpring 2020 12 / 35
Image Credit: Daniel Godoy

(Xavier) Glorot Initialization

• Uniform distribution

LTI/SCS 11-695: AI Engineering Other Techniques IISpring 2020 13 / 35
Image Credit: Daniel Godoy

(Xavier) Glorot Initialization

• Does it work for ReLU?

LTI/SCS 11-695: AI Engineering Other Techniques IISpring 2020 14 / 35
Image Credit: Daniel Godoy

(Kaiming) He Initialization4

• Forward

σ(W) =
√

2
fan in (normal) σ(W) =

√
6

fan in (uniform)

• Backward

σ(W) =
√

2
fan out (normal) σ(W) =

√
6

fan out (uniform)

• Combined:

σ(W) =
√

4
fan in + fan out (normal)

σ(W) =
√

12
fan in + fan out (uniform)

4
https://arxiv.org/pdf/1502.01852.pdf

LTI/SCS 11-695: AI Engineering Other Techniques IISpring 2020 15 / 35

https://arxiv.org/pdf/1502.01852.pdf

(Kaiming) He Initialization

• Normal Distribution

LTI/SCS 11-695: AI Engineering Other Techniques IISpring 2020 16 / 35
Image Credit: Daniel Godoy

(Kaiming) He Initialization

• Uniform Distribution

LTI/SCS 11-695: AI Engineering Other Techniques IISpring 2020 17 / 35
Image Credit: Daniel Godoy

(Kaiming) He Initialization

• Better than Glorot inits in their settings

• Many in the community agree, too!

LTI/SCS 11-695: AI Engineering Other Techniques IISpring 2020 18 / 35
Image Credit: Kaiming He et al.

(Kaiming) He Initialization

• Better than Glorot inits in their settings
• Many in the community agree, too!

LTI/SCS 11-695: AI Engineering Other Techniques IISpring 2020 18 / 35
Image Credit: Kaiming He et al.

What is the best?

• It varies
• Glorot works well with sigmoid or tanh
• He works well with ReLU and is usually used in vision

LTI/SCS 11-695: AI Engineering Other Techniques IISpring 2020 19 / 35
Image Credit: Daniel Godoy

More about initialization

tf.keras.layers.Conv2D example
1 __init__ (
2 filters ,
3 kernel_size ,
4 strides =(1 , 1),
5 padding =’valid ’,
6 data_format =None ,
7 dilation_rate =(1 , 1),
8 activation =None ,
9 use_bias =True ,

10 kernel_initializer =’glorot_uniform ’,
11 bias_initializer =’zeros ’,
12 kernel_regularizer =None ,
13 bias_regularizer =None ,
14 activity_regularizer =None ,
15 kernel_constraint =None ,
16 bias_constraint =None ,
17 ** kwargs
18)

• API: tf.keras.initializers

LTI/SCS 11-695: AI Engineering Other Techniques IISpring 2020 20 / 35

https://www.tensorflow.org/api_docs/python/tf/keras/initializers

Outline

1 Initialization

2 Weights regularization

3 Dropout

LTI/SCS 11-695: AI Engineering Other Techniques IISpring 2020 21 / 35

L-norm Regularization

• Is common in practice which helps generalization
• Inject weights constraint and optimize the loss within that

constraint
• Incorporate domain prior knowledge (recall: MAP)
• Can penalize based on Lq-norm of the weights: ‖θ‖q

LTI/SCS 11-695: AI Engineering Other Techniques IISpring 2020 22 / 35
Image Credit: Trevor Hastie et al.

L1 & L2 Regularization

• L1 and L2 are simple, classical but usually works well in practice

LTI/SCS 11-695: AI Engineering Other Techniques IISpring 2020 23 / 35
Image Credit: Trevor Hastie et al.

L2 Regularization

• L2: Loss change: λ
2‖θ‖

2
2, Gradients change: ηλθ

• Analytically sound, and so very popular in practice

LTI/SCS 11-695: AI Engineering Other Techniques IISpring 2020 24 / 35
Image Credit: MLxtend (Sebastian Rashka)

L1 Regularization

• L1: Loss change: λ
2‖θ‖1, (sub)Gradients change: ηλ sign(θ)

• Makes weights sparse, unlike L2

LTI/SCS 11-695: AI Engineering Other Techniques IISpring 2020 25 / 35
Image Credit: MLxtend (Sebastian Rashka)

Weight Decaying

• Weight decaying: θ(t+1) ← αθ(t) − η∇θl(θ(t)) with small α
• L2 regularization: l̃(θ(t)) = l(θ(t)) + λ

2‖θ
(t)‖22

• They are the same for SGD but not for other adaptive methods
• AdamW5 implements weight decaying properly for Adam
5

https://arxiv.org/pdf/1711.05101.pdf

LTI/SCS 11-695: AI Engineering Other Techniques IISpring 2020 26 / 35
Image Credit: Ian Goodfellow et al.

https://arxiv.org/pdf/1711.05101.pdf

Regularizer in tf.keras

tf.keras.regularizers example
1 # init object
2 my_l1 = tf. keras . regularizers .l1(l =0.01)
3 my_l2 = tf. keras . regularizers .l2(l =0.02)
4 my_l1l2 = tf. keras . regularizers . l1_l2 (l1 =0.01 , l2 =0.01) # L1 + L2 penalties
5
6 dense = tf. keras . layers . Dense (kernel_initializer =’ones ’,
7 kernel_regularizer =my_l1 ,
8 bias_regularizer =my_l2 , ...)
9

10 conv = tf. keras . layers . Conv2D (kernel_regularizer =my_l2 ,
11 activity_regularizer =my_l1l2 , ...)

• Normally, pass a tf.keras.regularizers object into a NN layer

LTI/SCS 11-695: AI Engineering Other Techniques IISpring 2020 27 / 35

Custom Regularizer in tf.keras6

custom regularizer
1 @tf. keras . utils . register_keras_serializable (package =’Custom ’, name=’l2 ’)
2 class L2Regularizer (tf. keras . regularizers . Regularizer):
3 def __init__ (self , l2 =0.): # pylint : disable =redefined -outer -name
4 self.l2 = l2
5
6 def __call__ (self , x):
7 return self.l2 * tf.math. reduce_sum (tf.math. square (x))
8
9 def get_config (self):

10 return {’l2 ’: float (self.l2)}
11
12 dense = tf. keras . layers . Dense (kernel_initializer =’ones ’,
13 kernel_regularizer = L2Regularizer (l2 =0.5) ,
14 ...)

• Need to overwrite call function properly

6
https://www.tensorflow.org/api_docs/python/tf/keras/regularizers/Regularizer

LTI/SCS 11-695: AI Engineering Other Techniques IISpring 2020 28 / 35

https://www.tensorflow.org/api_docs/python/tf/keras/regularizers/Regularizer

Outline

1 Initialization

2 Weights regularization

3 Dropout

LTI/SCS 11-695: AI Engineering Other Techniques IISpring 2020 29 / 35

Dropout (Hinton)7

• One of the most efficient regularization techniques
• Idea: Randomly drop neurons during training to reduce overfitting

7
http://www.cs.toronto.edu/˜hinton/absps/dropout.pdf

LTI/SCS 11-695: AI Engineering Other Techniques IISpring 2020 30 / 35
Image Credit: Nitish Srivastava et al.

http://www.cs.toronto.edu/~hinton/absps/dropout.pdf

Dropout

• Dropping probability: Λ ∼ Ber(p) (note: some use keeping prob)
• Training: each activation is changed as follow (both directions):

◦ Origin: hi = φ(WT
i hi−1 + bi)

◦ With dropout: Λi ∼ Ber(p), hi = φ
(
WT

i Λihi−1 + bi

)

• Test: dropout is turned off, and scaled (reduced) by a factor of p

LTI/SCS 11-695: AI Engineering Other Techniques IISpring 2020 31 / 35
Image Credit: Geoffrey Hinton et al.

Dropout

• Dropping probability: Λ ∼ Ber(p) (note: some use keeping prob)
• Training: each activation is changed as follow (both directions):

◦ Origin: hi = φ(WT
i hi−1 + bi)

◦ With dropout: Λi ∼ Ber(p), hi = φ
(
WT

i Λihi−1 + bi

)
• Test: dropout is turned off, and scaled (reduced) by a factor of p

LTI/SCS 11-695: AI Engineering Other Techniques IISpring 2020 31 / 35
Image Credit: Geoffrey Hinton et al.

Interpretation: Ensemble

• Has ensembling effect
• Difference:

◦ Exponentially subnetworks, only a small fraction gets trained
◦ All subnetworks share different subsets of params
LTI/SCS 11-695: AI Engineering Other Techniques IISpring 2020 32 / 35

Image Credit: Ian Goodfellow et al.

Interpretation: Bayesian Prior9

• Noise distribution (e.g. Bernoulli8 as above): λi ∼ p(λ)
• Noise diagonal matrix: Λi = diag(λ1, λ2, . . . , λ|hi−1|)
• With dropout: hi = φ

(
W T
i Λihi−1 + bi

)
• Loglikelihood is changed to: Expectation of Loglikelihood:

L(X,y, {Wi}ni=1) = Ep(λ)
[
log p

(
y |X, {Wi}ni=1, {Λi}n−1

i=1

)]
• The only assumption: Gaussian prior for all weights

Wi ∼ N(0, σ2)

8Others such as Gaussian, Half-Cauchy, ... also work well: https://arxiv.org/pdf/1806.05975.pdf
9

https://arxiv.org/pdf/1810.04045.pdf

LTI/SCS 11-695: AI Engineering Other Techniques IISpring 2020 33 / 35

https://arxiv.org/pdf/1806.05975.pdf
https://arxiv.org/pdf/1810.04045.pdf

Gaussian Scale Mixtures (GSM)10

• Independent scalar random variable: λ ∼ p(λ)
• A Gaussian variable with zero mean: W ∼ N(0, σ2)
• What is the distribution of λW?

θ
d= λW ∼ N(0, λ2σ2)

• Super-Gaussian distributions can be represented as GSMs such as
horsehoe, student-t, Laplace.

10
https://www.jstor.org/stable/2984774

LTI/SCS 11-695: AI Engineering Other Techniques IISpring 2020 34 / 35

https://www.jstor.org/stable/2984774

Gaussian Scale Mixtures (GSM)10

• Independent scalar random variable: λ ∼ p(λ)
• A Gaussian variable with zero mean: W ∼ N(0, σ2)
• What is the distribution of λW?

θ
d= λW ∼ N(0, λ2σ2)

• Super-Gaussian distributions can be represented as GSMs such as
horsehoe, student-t, Laplace.

10
https://www.jstor.org/stable/2984774

LTI/SCS 11-695: AI Engineering Other Techniques IISpring 2020 34 / 35

https://www.jstor.org/stable/2984774

Gaussian Scale Mixtures (GSM)10

• Independent scalar random variable: λ ∼ p(λ)
• A Gaussian variable with zero mean: W ∼ N(0, σ2)
• What is the distribution of λW?

θ
d= λW ∼ N(0, λ2σ2)

• Super-Gaussian distributions can be represented as GSMs such as
horsehoe, student-t, Laplace.

10
https://www.jstor.org/stable/2984774

LTI/SCS 11-695: AI Engineering Other Techniques IISpring 2020 34 / 35

https://www.jstor.org/stable/2984774

Prior Interpretation & Scale Sharing

• Review the output with dropout:

hi = φ

 W T
i Λi︸ ︷︷ ︸

scale mixtures

hi−1 + bi

= φ

(
Ŵi

T
hi−1 + bi

)
(original type)

with Ŵi,j ∼ N(0, λ2
iσ

2), and λi ∼ p(λi)
• This interpretation concurs with Automatic Relevance

Determination (ARD) by Mackay11 and Neal12
11

https://bayes.wustl.edu/MacKay/pred.pdf
12

http://www.cs.toronto.edu/pub/radford/thesis.pdf
LTI/SCS 11-695: AI Engineering Other Techniques IISpring 2020 35 / 35

Image Credit: Eric Nalisnick

https://bayes.wustl.edu/MacKay/pred.pdf
http://www.cs.toronto.edu/pub/radford/thesis.pdf

	Initialization
	Weights regularization
	Dropout

