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Cleansing Data is often overlooked

Iterate until Iterate to find
data is ready the best model
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e The very first process, that is essential

® Data in real world are often noisy and unclean

Image credit: David Chappell
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Cleansing Data is often overlooked
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e The very first process, that is essential
® Data in real world are often noisy and unclean
¢ Even super models cannot perform well on unclean data

e Sometimes it takes the majority of work in the full pipeline
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Common Techniques

¢ Examine carefully and build some useful statistics, charts, plots, ...
® Remove noisy, irrelevant samples
® Remove duplicates

¢ Fix labeling errors, such as matching/reconciliating 2 groups

which should be one

e Handle outliers and missing data properly: dropping should be the

last resort

e Some data has special techniques, e.g. for texts, sometimes we

need to remove punctuation, stop words, special characters, ...
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Takeaway Messages

e [t is very important that we understand well your data before
applying any techniques

¢ Don’t underestimate data cleansing in practice
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Bias-Variance Decomposition (MSE)?

Expected risk or error! for a new sample x:
Ep [(y — f(x, D))z} = (BiasD [f'(m, D)D2 + Varp {f(w,D)} + o2

where
) +¢, e ~ N(0,0%)
Biasp {f( } } f(x)

Varp [f(z, D)| = Ep [f (x,D)} - (Ep
0.2

(D))’

L—
>

is irreducible

1Dcrivation credit: Trevor Hastie et al. The Elements of Statistical Learning (book).
2Derivation details: https://en.wikipedia.org/wiki/Bias-variance_tradeoff
11-695: AI Engineering Spring 2020 T/ 17


https://en.wikipedia.org/wiki/Bias-variance_tradeoff

Underﬁt’ GOOdﬁt, Perfectﬁt and Overﬁt Carnegie Mellon
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e Note the total error is a curve, not a constant as in many tradeoffs

Image credit: Scott Fortmann-Roe and ebs. cat
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Underfit, Goodfit, Perfectfit and Overfit“" """

Low Variance High Variance

Low Bias

High Bias

® Good models should have both low bias and low variance
e Underfit: high empirical (train) risk (error or averaged loss values)

® Overfit: small empirical (train) risk but large true (test) risk

edit: Scott Fortmann-Roe
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How about model complexity?? negieMellon

under-fitting . over-fitting

. Test risk

under-par:
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Figure 1: Curves for training risk (dashed line) and test risk (solid line). (a) The classical
U-shaped risk curve arising from the bias-variance trade-off. (b) The double descent risk curve,
which incorporates the U-shaped risk curve (i.e., the “classical” regime) together with the observed
behavior from using high capacity function classes (i.e., the “modern” interpolating regime), sep-

arated by the interpolation threshold. The predictors to the right of the interpolation threshold
have zero training risk.

¢ Overparameterization (1 complexity) leads to a nice behavior too

e (lassical bias-variance curve only tells a part of the story

3
https://arxiv.org/pdf/1812.11118.pdf

Image credit: Mikhail Belkin et al.
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Double Descent Curve: extended story

Zero-one loss (%)

Squared loss
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w

Figure 4: Double descent risk curve for fully connected neural network on MNIST.
Training and test risks of network with a single layer of H hidden units, learned on a subset of
MNIST (n =4-10%, d = 784, K = 10 classes). The number of parameters is (d+1)-H+(H+1)-K.
The interpolation threshold (black dotted line) is observed at n - K.

Image credit: Mikhail Belkin et al.
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Weights Space and Norm

Zero-one loss Squared loss
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Figure 2: Double descent risk curve for RFF model on MNIST. Test risks (log scale),
coefficient £ norms (log scale), and training risks of the RFF model predictors Ay, v learned on a
subset of MNIST (n = 10%, 10 classes). The interpolation threshold is achieved at N = 10°.

® Space increases will lead to lower norm of the solutions

Image credit: Mikhail Belkin et al.
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Batch Normalization*

16/ =T
14
12 Input: Values of 2z over a mini-batch: B = {21..m };
; u; Parameters to be learned: v, 8
06 Output: {y; = BN, s(x:)}
04 m
02 .
o=z - > " nB — oo ; €; // mini-batch mean
Lo
2 2 . s .
— — @ — Vi -batch
o - ;(M un) mini-batch variance
T+ ‘Ilziug // normalize
Vogte
yi < 7% + B = BN, p(a;) // scale and shift

e (Covariate Shift: different distributions between train and test sets

4 ;
https://arxiv.org/pdf/1502.03167.pdf Image credit: Wei F an, Masashi Sugiyama and Sergey Ioffe, Christian Szegedy
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Batch Normalization*

16/ =T
14
12 Input: Values of 2z over a mini-batch: B = {21..m };
u; Parameters to be learned: v, 8
08 Output: {y; = BN, s(x:)}
Z‘; m
o=z - > " nB — oo Z €; // mini-batch mean

Ci=1

&
2 2 . s .

o — — Ti— b // mini-batch variance
B m ;( i — IB)

// normalize

yi < 7% + B = BN, p(a;) // scale and shift

e (Covariate Shift: different distributions between train and test sets

¢ Internal Covariate Shift: a covariate shift between 2 layers in NN

4 ;
https://arxiv.org/pdf/1502.03167.pdf Image credit: Wei F an, Masashi Sugiyama and Sergey Ioffe, Christian Szegedy
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Batch Normalization*

12 Input: Values of 2z over a mini-batch: B = {21..m };
Parameters to be learned: v, 8
Output: {y; = BN, s(x:)}

m

02 1 ..
s Zl 2 // mini-batch mean
iz

&
2 2 . s .

o — — Ti— b // mini-batch variance
B m ;( i — IB)

// normalize

Vogte
yi < 7% + B = BN, p(a;) // scale and shift

Covariate Shift: different distributions between train and test sets

Internal Covariate Shift: a covariate shift between 2 layers in NN

Fix: scale unto unit Gaussian distribution N (0, I)

4 ;
https://arxiv.org/pdf/1502.03167.pdf Image credit: Wei F an, Masashi Sugiyama and Sergey Ioffe, Christian Szegedy
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i 1 Carnegie Mell
Batch Normalization (cont’d) arnegieMellon

Input: Values of 2 over a mini-batch: B = {21._m};
Parameters to be learned: vy, 8
Output: {y; = BN, z(z;)}
L&
nB o ; xz; // mini-batch mean
Lo
2 2 L .
= Ti — UB Vi -batch v
) L R, ;(11 uB) mini-batch variance
3. - o we _
4 4, Test samples Ti + i = e // normalize
A Y ".' Vogte
w5, Yi < Y% + B = BN, g(2;) // scale and shift
05 ° :
o i PR

Training time: Take batch, compute (py, o) — new training
values — feed to the next layer

Test time: use the whole test set instead of each batch

Image credit: Ioffe and Szegedy
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Argument: Not about Co-Variate Shift5 Carnegie Mellon
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® Adding co-variate shift does not reduce the effect of batchnorm

5 X
https://arxiv.org/abs/1805.11604 Image credit: Santurkar and Tsipras
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Argument: Not about CO-VaI'iate Shift Carnegie Mellon
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® Adding co-variate shift does not reduce the effect of batchnorm

® Batch norm seems to make the loss landscapes smoother for

optimization

Image Credit: Santurkar and Tsipras
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