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Linear Regression

• Linear Regression model:

y = f(x) = wTx + ε

where the noise
ε ∼ N(0, σ2)

• MLE estimator

ŵMLE = argmin
w

1
2σ2

n∑
i=1

(y(i) −wTx(i))2

• Closed-form solution for MLE (a.k.a normal equations):

ŵMLE = (XTX)−1XTY
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Linear Regression

• With prior w ∼ N(0, λ−1I) = 1
(2π)D/2 exp(−λ

2 wTw) then MAP
estimator

ŵMAP = argmin
w

1
2σ2

n∑
i=1

(y(i) −wTx(i))2 + λ

2 wTw

• Closed-form solution for MAP:

ŵMAP = (XTX + λI)−1XTY

• Problems?

(Moore-Penrose) pseudo-inverse (XTX + λI)−1 takes
O(n3)
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Logistic Regression

• MLE estimator

ŵMLE = argmin
w

n∑
i=1

log
(
1 + exp(−y(i)wTx(i)

)
• With the same prior for w, MAP estimator:

ŵMAP = argmin
w

n∑
i=1

log
(
1 + exp(−y(i)wTx(i)

)
+ λ

2 wTw

• Closed-form solution:

non-existent
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What have we got here

• In most real-world problems, data is big

• In which case, finding the exact solution is intractable
• Workaround: approximate solutions
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Gradient Descent (Cauchy) 1

• Unconstrained optimization problem with smooth function f :

min
x
f(x)

• Idea: at some point xt, approximate f(xt) with a parabola:

Gt(x, xt) = f(xt) +∇f(xt)T (x− xt) + 1
2η (x− xt)T (x− xt)

xt+1 = argmin
x

Gt(x) = xt − η∇f(xt) (1)

• Algorithm: initially guess x0 and repeat (1) and stop somewhere.

1
https://www.math.uni-bielefeld.de/documenta/vol-ismp/40_lemarechal-claude.pdf
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Gradient Descent (Cauchy)

• Iterative algorithm
• Is sensitive to the chosen step size

• Pros: simple, cheap, fast for strongly convex functions
• Cons: only work for smooth functions, slow convergence rate
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Newton’s Method

• GD is the first-order method, and slow to converge in most cases
• Idea: use a better parabola for approximation

Gt(x, xt) = f(xt) +∇f(xt)T (x− xt) + 1
2(x− xt)THt(x− xt)

xt+1 = xt −H−1
t ∇f(xt) (2)

where Ht = ∇2f(xt) is the Hessian matrix.

• Hence, Newton’s is the second-order method.
• Variance with a step size: xt+1 = xt − ηH−1

t ∇f(xt)
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Quasi-Newton’s Method

• Newton’s method
◦ Pros: has quadratic convergence rate vs. linear in GD

◦ Cons: very expensive for Hessian calculation and its inverse: O(n3)
• Idea of Quasi-Newton’s (sometimes called secant) method:

approximate Hessian H with H̃ and thus gain O(n2)
• Skip the details, but it has super linear convergence rate
• Although cheaper than Newton’s, it is still complicated and not

efficient as GD
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Gradient Descent: How to apply

• Data: D = {(x(1),y(1)), (x(2),y(2)), . . . , (x(n),y(n))}
• Each step, we calculate the gradient of the loss function:

∇θL(θ) = ∇θ
n∑
i=1

l(f(x(i), θ),y(i)) =
n∑
i=1
∇θ l(f(x(i), θ),y(i))

• Problem?
◦ ImageNet: n = 1, 200, 000
◦ English-German translation: n = 4, 500, 000
◦ Google 1-billion-words data: n = 1, 000, 000, 000
◦ Human Genes: n =???
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Stochastic Gradient Descent (SGD)

• Each step, randomly draw a sample x(k) ∈ X and approximate

∇θL(θ) ≈ ∇θl(f(x(k), θ),y(k))

• Why?

Unbiased estimate of full gradient:

E[∇θl(f(x(k), θ),y(k))] = ∇θL(θ),

and it’s much doable for large-scale datasets.
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Stochastic Gradient Descent (SGD)

• In practice, we often use a mini-batch version of SGD, in which we
choose a subset of b << n samples. Why?

• The most important method for neural networks and large-scale
data
• Many variances of SGD, which come later in the course.
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Choice for Large-Scale Datasets

• Stochastic algorithms are faster
• First-order methods are clearly cheaper
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How a Good Model should be?

• Fit well with current data (train, validation, test).

◦ Be able to learn well the relationship between X and y
◦ Linear or Nonlinear?

• Generalize well with data in the similar domain
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Nonlinear choice: Basis Functions

• Apply a feature mapping on input data with a basis function:

x⇒ Φ(x)

◦ Non linear of input, but (still) linear of params
◦ Model is unchanged
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Nonlinear choice: Basis Functions

• Cons
◦ Handcrafted features: expert knowledge
◦ Curse of Dimensionality

LTI/SCS 11-695: AI Engineering ML Reviews IISpring 2020 19 / 24
Image credit: Catarina Moreira



Nonlinear choice: Adaptive Basis Func

• A nonlinear function that is
◦ Agnostic to input dimension
◦ Able to learn an efficient feature mapping space

• Such design is found in neural networks: sigmoid, tanh, ReLU, ...
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Construction of NNs

• Supervised learning input (X,y) ∈ Rn×d × Rn
• Two basic operations

◦ Linear: oi = WT
i ai−1 + bi

◦ Nonlinear (by activation functions) : ai = φ(oi)

• Usually comprise of a sequence of such pair of basic operations
◦ To improve capacity,
◦ Obviously, with a cost
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Construction of NNs

• Mathematically (note the dimensions):

ŷ = (φn ◦ fWn ◦ φn−1 ◦ fWn−1 . . . φ1 ◦ fW1)(X)

Ŵ = {Wn,Wn−1, . . . ,W1} = argmin
W

L(ŷ,y)

• Visually: A sequence of hidden layers
◦ Each has the two basic operations above,
◦ Except?
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Example: MNIST

• Demo 1: https://ml4a.github.io/demos/f_mnist_weights/

• Demo 2: http://playground.tensorflow.org/
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