11-695: AI Engineering

ML Reviews II

LTI/SCS

Spring 2020

LTI/SCS 11-695: AI Engineering Spring 2020 1 /24

O u t line Carnegie Mellon

@ Motivation: Classical Learning Methods

11-695: AI Engineering Spring 2020 2/ 24

Carnegie Mellon

Linear Regression

® Linear Regression model:
y=f(x)=wlx+e

where the noise

e ~N(0,0%)
e MLE estimator
@ B LN)T e
MLE = argmin -— Z(y w ')
w207

® Closed-form solution for MLE (a.k.a normal equations):
WL = (XTX) ' XTY

11-695: AI Engineering Spring 2020 3/ 24

Carnegie Mellon

Linear Regression

* With prior w ~ N(0, \"!I) = @)D/2 exp(— 2W Tw) then MAP
estimator

1 n
WrAp = argmin 597 - Z))2 + Zwlw
w

e (Closed-form solution for MAP:
Wiap = (XTX + A1) 1XTY

e Problems?

11-695: AI Engineering Spring 2020 4 /24

Carnegie Mellon

Linear Regression

* With prior w ~ N(0, \"!I) = W eXp(fngW) then MAP
estimator

1 & . , A
Wirap = argmin o— 3 (0 - wlz®)? 4 SwTyy
w g i1 2

e (Closed-form solution for MAP:
Wiap = (XTX + A1) 1XTY

® Problems? (Moore-Penrose) pseudo-inverse (X7X + AI)~! takes
O(n?)

11-695: AI Engineering Spring 2020 4 /24

Carnegie Mellon

Logistic Regression

e MLE estimator

n
WL E = argmin Z log (1 + exp(_y(i)wa(i))
W=l

e With the same prior for w, MAP estimator:

A
WaAP = argmlnz log (+ exp(—y(Jw'z0)) + §WTW

=1

® (Closed-form solution:

11-695: AI Engineering Spring 2020 5/ 24

Carnegie Mellon

Logistic Regression

e MLE estimator

WL E = argmin Z log (1 + exp(_y(i)wa(i))

W=l
e With the same prior for w, MAP estimator:
WapAP = argmlnz log (+ exp(—y()WT:L'()) + iWTW
=1 2

® (Closed-form solution: non-existent

11-695: AI Engineering Spring 2020 5/ 24

Carnegie Mellon

What have we got here

® In most real-world problems, data is big

11-695: AI Engineering Spring 2020 6 /24

Carnegie Mellon

What have we got here

® In most real-world problems, data is big

¢ In which case, finding the exact solution is intractable

11-695: AI Engineering Spring 2020 6 /24

Carnegie Mellon

What have we got here

® In most real-world problems, data is big
¢ In which case, finding the exact solution is intractable

¢ Workaround: approximate solutions

11-695: AI Engineering Spring 2020 6 /24

O ut line Carnegie Mellon

® Choices of Approximate Optimization Methods

11-695: AI Engineering Spring 2020 7T/ 24

i CarnegieMell
Gradient Descent (Cauchy) ! wnegieMellon

¢ Unconstrained optimization problem with smooth function f:

min f(x)

1
https://www.math.uni-bielefeld.de/documenta/vol-ismp/40_lemarechal-claude.pdf
11-695: AI Engineering Spring 2020 8 /24

https://www.math.uni-bielefeld.de/documenta/vol-ismp/40_lemarechal-claude.pdf

i CarnegieMell
Gradient Descent (Cauchy) ! wnegieMellon

¢ Unconstrained optimization problem with smooth function f:
min f (x)

¢ Idea: at some point z;, approximate f(z;) with a parabola:

G, a0) = [(an) + V() (& — 1) + 2177@ —)T (x —)

T = argmin Gy(z) = z¢ — nV f(x) (1)

1
https://www.math.uni-bielefeld.de/documenta/vol-ismp/40_lemarechal-claude.pdf
11-695: AI Engineering Spring 2020 8 /24

https://www.math.uni-bielefeld.de/documenta/vol-ismp/40_lemarechal-claude.pdf

i CarnegieMell
Gradient Descent (Cauchy) ! wnegieMellon

¢ Unconstrained optimization problem with smooth function f:
min f (x)

¢ Idea: at some point z;, approximate f(z;) with a parabola:

G, a0) = [(an) + V() (& — 1) + 2177@ —)T (x —)

T = argmin Gy(z) = z¢ — nV f(x) (1)

e Algorithm: initially guess zp and repeat (1) and

1
https://www.math.uni-bielefeld.de/documenta/vol-ismp/40_lemarechal-claude.pdf
11-695: AI Engineering Spring 2020 8 /24

https://www.math.uni-bielefeld.de/documenta/vol-ismp/40_lemarechal-claude.pdf

i CarnegieMell
Gradient Descent (Cauchy) ! wnegieMellon

¢ Unconstrained optimization problem with smooth function f:
min f (x)

¢ Idea: at some point z;, approximate f(z;) with a parabola:

G, a0) = [(an) + V() (& — 1) + 2177@ —)T (x —)

T = argmin Gy(z) = z¢ — nV f(x) (1)

e Algorithm: initially guess zp and repeat (1) and stop somewhere.

1
https://www.math.uni-bielefeld.de/documenta/vol-ismp/40_lemarechal-claude.pdf
11-695: AI Engineering Spring 2020 8 /24

https://www.math.uni-bielefeld.de/documenta/vol-ismp/40_lemarechal-claude.pdf

Gradient Descent (Cauchy) Carnegie Mellon

® Jterative algorithm

® [s sensitive to the chosen step size

11-695: AI Engineering Spring 2020 9/ 24

Gradient Descent (Cauchy) Carnegie Mellon

Iterative algorithm

Is sensitive to the chosen step size

Pros: simple, cheap, fast for strongly convex functions

Cons: only work for smooth functions, slow convergence rate

11-695: AI Engineering Spring 2020 9/ 24

Carnegie Mell
NeWton’s Method arnegie Mellon

e GD is the first-order method, and slow to converge in most cases

® Idea: use a better parabola for approximation

Chlw 1) = Flan) + V()T (x — 20) + %(x —)T H (=)

Ty = xp — H 'V f () (2)

where H; = V2f(z;) is the Hessian matrix.

11-695: AI Engineering Spring 2020 10 / 24

Carnegie Mell
NeWtOI]_’S Method arnegie Mellon

GD is the first-order method, and slow to converge in most cases

® Idea: use a better parabola for approximation
1
Gi(w,x1) = f(xe) + V(@) (& —) + 5z =) Hy(z —)
T =z — H 'V f () (2)

where H; = V2f(z;) is the Hessian matrix.
® Hence, Newton’s is the second-order method.

e Variance with a step size: x4 = x4 — UH;1Vf(l't)

11-695: AI Engineering Spring 2020 10 / 24

i Carnegie Mell
QuaSI-Newton’S Method arnegie Mellon

Newton BFGS
10%; 10°
10° 10°
. .
“ “
;107 | 107
& 10°° % 10
- -
107° 107°
—12 —12
1075 2 4 6 8 10 12 1077, 50 100 150
k k

® Newton’s method

o Pros: has quadratic convergence rate vs. linear in GD

Image credit: Ryan Tibshirani

11-695: AI Engineering Spring 2020 11 / 24

i Carnegie Mell
QuaSI-NeWton,S Method arnegie Mellon

Newton BFGS
10%; 10°
10° 10°
. .
“ “
;107 | 107
& 10°° % 10
- -
107° 107°
—12 —12
1075 2 4 6 8 10 12 1077, 50 100 150
k k

® Newton’s method
o Pros: has quadratic convergence rate vs. linear in GD

o Cons: very expensive for Hessian calculation and its inverse: O(n?)

Image credit: Ryan Tibshirani

11-695: AI Engineering Spring 2020 11 / 24

i Carnegie Mell
QuaSI-NeWtOn,S Method arnegie Mellon

4 Newton " BFGS
10%; 10
10° 10°
. .
“ “
;107 | 107
& 10°° % 10
- -
107° 107°
—12 —12
1075 2 4 6 8 10 12 10 50 100 150
k k

® Newton’s method

o Pros: has quadratic convergence rate vs. linear in GD

o Cons: very expensive for Hessian calculation and its inverse: O(n?)
® Idea of Quasi-Newton’s (sometimes called secant) method:

approximate Hessian H with H and thus gain O(n?)

Image credit: Ryan Tibshirani

11-695: AI Engineering Spring 2020 11 / 24

i Carnegie Mell
QuaSI-NeWtOn,S Method arnegie Mellon

4 Newton " BFGS
10%; 10
10° 10°
. .
“ “
;107 | 107
& 10°° % 10
- -
107° 107°
—12 —12
1075 2 4 6 8 10 12 10 50 100 150
k k

® Newton’s method
o Pros: has quadratic convergence rate vs. linear in GD

o Cons: very expensive for Hessian calculation and its inverse: O(n?)

® Idea of Quasi-Newton’s (sometimes called secant) method:
approximate Hessian H with H and thus gain O(n?)

e Skip the details, but it has super linear convergence rate

Image credit: Ryan Tibshirani

11-695: AI Engineering Spring 2020 11 / 24

Quasi-Newton’s Method

Carnegie Mellon

f&*) - f*

Newton BFGS

10°
10°
107°
10°¢
107°

12
1077,

Newton’s method

o Pros: has quadratic convergence rate vs. linear in GD

o Cons: very expensive for Hessian calculation and its inverse: O(n?)

Idea of Quasi-Newton’s (sometimes called secant) method:

approximate Hessian H with H and thus gain O(n?)

Skip the details, but it has super linear convergence rate

Although cheaper than Newton’s, it is still complicated and not
efficient as GD

Image credit: Ryan Tibshirani

11-695: AI Engineering Spring 2020 11 / 24

Carnegie Mellon

Gradient Descent: How to apply

* Data: D = {(x, y0), (=2, y2), ..., (x0,y)}
® BEach step, we calculate the gradient of the loss function:

n

VoL(0) =V 3 1D, 0),y) Zvez yY)

i=1

11-695: AI Engineering Spring 2020 12 / 24

Carnegie Mellon

Gradient Descent: How to apply

* Data: D = {(x, y0), (=2, y2), ..., (x0,y)}
® BEach step, we calculate the gradient of the loss function:

n

VoL(0) =V 3 1D, 0),y) Zvez yY)

i=1

e Problem?

11-695: AI Engineering Spring 2020 12 / 24

Carnegie Mellon

Gradient Descent: How to apply

o Data: D = {(x,y), (x?,y @), ..., (x5}
® FEach step, we calculate the gradient of the loss function:

n

VoL(0) = Vs 3 1(E(xD, 0), y) Zvai ,0),y®)

i=1

¢ Problem?
o ImageNet: n = 1,200,000
o English-German translation: n = 4,500, 000
o Google 1-billion-words data: n = 1,000,000, 000
o Human Genes: n =777

11-695: AI Engineering Spring 2020 12 / 24

Stochastic Gradient Descent (SGD) CarnegieMellon

® Each step, randomly draw a sample x(k) € X and approximate
VoL(6) ~ Vol(f(x,), y™)

o Why?

11-695: AI Engineering Spring 2020 13 / 24

Stochastic Gradient Descent (SGD) CarnegieMellon

® Each step, randomly draw a sample x(k) € X and approximate
Vo L(0) ~ Vol (f(x®),6),y ™)

¢ Why? Unbiased estimate of full gradient:
E[Vl(£(x™),0),y*)] = V4L(0),

and it’s much doable for large-scale datasets.

11-695: AI Engineering Spring 2020 13 / 24

Stochastic Gradient Descent (SGD) CarnegieMellon

\ — Ful
— Stochastic
\J\ Mini-batch, b=10
- \ — Minibatch, b=100
8
3
= o
: 8
s 3
£
S
o
8
3
s
8
3
T T T T T T
0 10 20 30 40 50

¢ In practice, we often use a mini-batch version of SGD, in which we
choose a subset of b << n samples. Why?

Image credit: Ryan Tibshirani

11-695: AI Engineering Spring 2020 14 / 24

Stochastic Gradient Descent (SGD) ComegieMellon

\ — Ful
— Stochastic
\ Mini-batch, b=10
\ — Mini-batch, b=100

0.65
L

Criterion fk
0.60
L

0.55
L

0.50
L

¢ In practice, we often use a mini-batch version of SGD, in which we

choose a subset of b << n samples. Why?

® The most important method for neural networks and large-scale
data

Image credit: Ryan Tibshirani

11-695: AI Engineering Spring 2020 14 / 24

Stochastic Gradient Descent (SGD) CarnegieMellon

\ — Ful
— Stochastic
\'/\ Mini-batch, b=10
\ — Minibatch, b=100

0.65
L

Criterion fk
0.60
L

0.55
L

0.50
L

¢ In practice, we often use a mini-batch version of SGD, in which we

choose a subset of b << n samples. Why?

® The most important method for neural networks and large-scale
data

® Many variances of SGD, which come later in the course.

Image credit: Ryan Tibshirani

11-695: AI Engineering Spring 2020 14 / 24

Carnegie Mellon

Choice for Large-Scale Datasets

Table 2. Asymptotic equivalents for various optimization algorithms: gradient
descent (GD, eq. 2), second order gradient descent (2GD, eq. 3), stochastic gradient
descent (SGD, eq. 4), and second order stochastic gradient descent (25GD, eq. 5).
Although they are the worst optimization algorithms, SGD and 2SGD achieve the
fastest convergence speed on the expected risk. They differ only by constant factors
not shown in this table, such as condition numbers and weight vector dimension.

GD 2GD SGD 2SGD
Time per iteration : n n 1 1
Iterations to accuracy p: log 71) loglog % ;1’ 1
Time to accuracy p: n log % n loglog % ‘l) g
2
Time to excess error £: 7z log iz log g loglogz ¢ i

® Stochastic algorithms are faster

¢ First-order methods are clearly cheaper

Image credit: Léon Bottou

11-695: AI Engineering Spring 2020 15 / 24

O u t line Carnegie Mellon

@ Motivation: Learning Models

11-695: AI Engineering Spring 2020 16 / 24

HOW a G-Ood Model ShOU.ld be? Carnegie Mellon

¢ Fit well with current data (train, validation, test).

Image credit: Kamran Kowsari et al.

11-695: AI Engineering Spring 2020 17 / 24

HOW a G-Ood Model ShOU.ld be? Carnegie Mellon

¢ Fit well with current data (train, validation, test).

o Be able to learn well the relationship between X and y

Image credit: Kamran Kowsari et al.

11-695: AI Engineering Spring 2020 17 / 24

HOW a G-Ood Model ShOU.ld be? Carnegie Mellon

¢ Fit well with current data (train, validation, test).

o Be able to learn well the relationship between X and y

o Linear or Nonlinear?

Image credit: Kamran Kowsari et al.

11-695: AI Engineering Spring 2020 17 / 24

HOW a GOOd Model ShOU.ld be? Carnegie Mellon

¢ Fit well with current data (train, validation, test).

o Be able to learn well the relationship between X and y

o Linear or Nonlinear?

® (Generalize well with data in the similar domain

Image credit: Kamran Kowsari ef al.

11-695: AI Engineering Spring 2020 17 / 24

Carnegie Mellon

Nonlinear choice: Basis Functions

Input Space Feature Space

® Apply a feature mapping on input data with a basis function:

x = O(x)

o Non linear of input, but (still) linear of params
o Model is unchanged

Image credit: Catarina Moreira

11-695: AI Engineering Spring 2020 18 / 24

Carnegie Mellon

Nonlinear choice: Basis Functions

Input Space Feature Space

e Cons

o Handcrafted features: expert knowledge

o Curse of Dimensionality

Image credit: Catarina Moreira

11-695: AI Engineering Spring 2020 19 / 24

i i ; . CarnegieMell
Nonlinear choice: Adaptive Basis Func ™

®© © ® ® ®

e A nonlinear function that is

o Agnostic to input dimension

o Able to learn an efficient feature mapping space

Image credit: Vicente Ordéfiez Roman

11-695: AI Engineering Spring 2020 20 / 24

Carnegie Mellon

Nonlinear choice: Adaptive Basis Func

®© © ®© © O

e A nonlinear function that is
o Agnostic to input dimension

o Able to learn an efficient feature mapping space

® Such design is found in neural networks: sigmoid, tanh, ReLLU, ...

Image credit: Vicente Ordéiez Roméan

11-695: AI Engineering Spring 2020 20 / 24

O u t line Carnegie Mellon

@ Feed-forward Neural Networks (NN)

11-695: AI Engineering Spring 2020 21 / 24

i Carnegie Mell
Constructlon Of NNS arnegie Mellon

®@ ® ®

© © &
© ® ®
®EE

e Supervised learning input (X,y) € R4 x R”
® Two basic operations
o Linear: o; = WiTai_l + b;

o Nonlinear (by activation functions) : a; = ¢(0;)

Image credit: Vicente Ordéfiez Roman

11-695: AI Engineering Spring 2020 22 / 24

i CarnegieMell
ConStructlon Of NNS irnegie Mellon

®@ ® ®

CECAC)
© © ©
PO®

e Supervised learning input (X,y) € R4 x R”

® Two basic operations
o Linear: o; = WZ-Tai_l + b;
o Nonlinear (by activation functions) : a; = ¢(0;)

¢ Usually comprise of a sequence of such pair of basic operations
o To improve capacity,

o Obviously, with a cost

Image credit: Vicente Ordéniez Roméan

11-695: AI Engineering Spring 2020 22 / 24

i Carnegie Mell
Constructlon Of NNS arnegie Mellon

© © ®© © O

¢ Mathematically (note the dimensions):

V= (¢nofw, odn_10fw, ,...¢1 0w)(X)
W = {W,,, Wy_1,..., W1} = argmin L(3,y)
W

® Visually: A sequence of hidden layers

o Each has the two basic operations above,
o Except?

Image credit: Vicente Ordéfiez Roman

11-695: AI Engineering Spring 2020 23 / 24
R — . B —————————————

Examp]_e: MNIST Carnegie Mellon

pixel 1—Q
pixel 2— Q"
pixel 3— Q5

pixel 4—Q =
pixel 5—Q
pixel 6— Q)
pixel 7—Q)
pixel 8—Q
pixel 9— O =
pixel 10—Q
pixel 11—C
pixel 12— -
pixel 13— -
pixel 14—O ~
pixel 15— O =~
pixel 16—
pixel 17— O -
pixel 18— O+~

pixel 19— 7= - :
& pixelzoﬁg
pixel 784 —

® Demo 1: https://ml4a.github.io/demos/f_mnist_weights/

ecocefofofolo)0)o)e
JO0O0O0000LLL

® Demo 2: http://playground.tensorflow.org/

Image credit: Gene Kogan

11-695: AI Engineering Spring 2020 24 / 24

https://ml4a.github.io/demos/f_mnist_weights/
http://playground.tensorflow.org/

	Motivation: Classical Learning Methods
	Choices of Approximate Optimization Methods
	Motivation: Learning Models
	Feed-forward Neural Networks (NN)

