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Example: Classification

• Find a function y = f(x)
◦ x: an image
◦ y: dog, cat, bird, car, etc.

classifier dog

LTI/SCS 11-695: AI Engineering ML ReivewsSpring 2020 3 / 27



Example: Machine Translation

• Find a function y = f(x)
◦ x: an English sentence
◦ y: an French sentence
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How to Find the Function (or Model) f?

• An optimization problem: find f that minimizes the errors towards
a defined an objective function
• Learn from data given
• In many cases, with knowledge/prior/bias about the nature of

◦ Data: text, videos, images, ...
◦ Expert knowledge: NLP, Medicine, ... For example, to guide the

models.
◦ ...
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How to Model f?

• Parametric:
◦ Believe that a fixed param W ∼ Ω is enough to represent f in any

case
◦ The param space Ω is well-defined, e.g. R200×10

◦ Choose a learning method, e.g. MLE, MAP, ..., to learn W
◦ Simple: only estimate params, but we have to inject our bias about

data
• Nonparametric:

◦ f ∼ F, a function space
◦ It has params, but infinite of them
◦ Number of params can change when data change
◦ Make no assumption about data, but more complicated because we

have to estimate the model, and params of that model
◦ More flexible, but a caveat: need to make model assumption
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Data for Supervised Learning

• Pairs of (x,y): D = {(x(1),y(1)), (x(2),y(2)), . . . , (x(n),y(n))}
• Each x(i) is called a data point
• Each y(i) is called a label
• x(i) and y(i) can be anything
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Data Representation

• Computers don’t “see” things like we do

• ... so it’s hard to make them think like we do
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Some Types of Labels

• Label y is in a discrete set C = {1, 2, ..., |C|}
◦ Classification problems

• Label y is in a “continuous” set, e.g. y ∈ [0, 1]
◦ Regression problems

• Label y is has some self-dependencies, e.g. a sentence in French
◦ Structured prediction problems

• Why learn these?
◦ The types of problems you tackle (loosely) tell you how to design

the learning models.
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Parametric Learning Problem

• Data D = {(x(1),y(1)), (x(2),y(2)), . . . , (x(n),y(n))}
• Objective: find parameter W that best fits data
• Each model has its own definition of “best fits”
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Maximum Likelihood Estimation (MLE)

• Goal: Maximize probability of data given params P (D | θ), a.k.a
likelihood of the params
• Normally we deal with log of this likelihood

L(θ) = logP (D | θ) = log
n∏
i=1

P (x(i) | θ) =
n∑
i=1

logP (x(i) | θ)

• MLE estimator is:

θ̂MLE = argmax
θ
L(θ) = argmax

θ

n∑
i=1

logP (x(i) | θ)
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Maximum-A-Posteriori (MAP)

• Goal: Maximize probability of posterior of params given data

P (θ |D)︸ ︷︷ ︸
posterior

= P (θ)× P (D | θ)
P (D) ∝ P (θ)︸ ︷︷ ︸

prior

×P (D | θ)︸ ︷︷ ︸
likelihood

• Same as MLE, normally we deal with log of this posterior

logP (θ |D) ∝ logP (θ) + logP (D | θ)

• MAP estimator is:

θ̂MAP = argmax
θ

logP (θ |D) = argmax
θ

(
logP (θ) + logP (D | θ)︸ ︷︷ ︸

loglikelihood

)
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A Classic Linear Regression Example

• Linear Regression model: y = f(x) = wTx + ε where ε ∼ N(0, σ2)
• Each i.i.d sample:

P (y(i) |x(i),w) = N(y(i) |wTx(i), σ2)

= 1
σ
√

2π
exp

(
− (y(i) −wTx(i))2

2σ2

)
• Log Likelihood

L(w) =
n∑
i=1

(
− 1

2 log(2πσ2)− (y(i) −wTx(i))2

2σ2

)
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A Classic Linear Regression Example

• MLE estimator

ŵMLE = argmin
w

1
2σ2

n∑
i=1

(y(i) −wTx(i))2

• With prior w ∼ N(0, λ−1I) = 1
(2π)D/2 exp(−λ

2 wTw) then MAP
estimator

ŵMAP = argmin
w

1
2σ2

n∑
i=1

(y(i) −wTx(i))2 + λ

2 wTw
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A Classic Logistic Regression Example

• Binary classification with labels y ∈ {−1, 1} and logistic
classification function: sigmoid(x) = 1/(1 + exp(−x))
• Log Likelihood

L(w) =
n∑
i=1
− log

(
1 + exp(−y(i)wTx(i)

)
• MLE estimator

ŵMLE = argmin
w

n∑
i=1

log
(
1 + exp(−y(i)wTx(i)

)
• With the same prior for w, MAP estimator:

ŵMAP = argmin
w

n∑
i=1

log
(
1 + exp(−y(i)wTx(i)

)
+ λ

2 wTw
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Loss Function

• Notations:
◦ x is your data; y is your label;
◦ f is your model; θ is your parameter;
◦ ŷ = f(x; θ) is your empirical prediction.

• Loss function: L(y, ŷ) = L(y, f(x, θ))

◦ How “off” is y from ŷ = f(x; θ)
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Case Study: Car prize prediction

• Data: image of a car x ∈ R3×512×512

• Label: cost of the car x, namely y ∈ R
• Linear regression:

◦ Parameters: θ = {w ∈ R786432×1}, where
786432 = 3× 512× 512.

◦ x1 = reshape(x, [1, 786432])

◦ ŷ = x1 ·w

◦ L(y, ŷ) = (ŷ− y)2 is called the `2-loss

◦ L(y, ŷ) = |ŷ− y| is called the `1-loss

• Do we have other options of losses?
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Case Study 2: Image classification

• Data: x ∈ R3×32×32

• Label: y ∈ {dog, cat,house, car,flower}

◦ For ease: y ∈ {1, 2, 3, 4, 5}

• Softmax classification:

◦ Parameters: θ = {w ∈ R3072×10}.

◦ x1 = reshape(x, [1, 3072])

◦ ` = x1 ·w

◦ p̂ = Prob [y = i] = exp {`i}∑5
j=1 exp {`j}︸ ︷︷ ︸

soft-max

l

◦ Cross-entropy loss: L(p̂,y) = −y log p̂y.
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Review: Information Theory

• Let X ∼ P (X) be a random variable
• (Shannon) information content of an out-

come x is h(x) = − log2 P (x)

• In: bits/nats/shannons/dits/bans/hartleys
• Measure the “uncertainty” of an outcome
• Entropy of a set S is the average informa-

tion content:

H(X) =
∑
x∈S
−P (x) logP (x)

= −Ex∼P [logP (x)]
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Review: Information Theory

• Joint Entropy of X,Y is

H(X,Y ) = −
∑
x,y

P (x, y) logP (x, y)

• Conditional entropy

H(X|Y ) = −
∑
y

H(X|Y = y)P (Y = y) = −
∑
x,y

P (x, y) logP (x|y)

• Chain rule:
H(X|Y ) = H(X,Y )−H(Y )

• Bayes’ rule:

H(Y |X) = H(X|Y )−H(X) + H(Y )
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Review: Information Theory

• Mutual Information (Information gain) of X and Y:

I(X,Y ) =
∑
x,y

P (x, y) log P (x, y)
P (x)P (y)

• Relation to conditional entropy:

I(X,Y ) = H(X)−H(X|Y )

= H(Y )−H(Y |X)

= H(X) + H(Y )−H(X,Y )

• If X,Y are independent, we have:

I(X,Y ) = 0

H(X|Y ) = H(X)

H(X,Y ) = H(X) + H(Y )
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Review: Information Theory

• Relative Entropy or Kullback-Leibler (KL) divergence of 2
distributions P(x) and Q(x) over the same set is:

DKL(P ‖Q) =
∑
x

P (x) log P (x)
Q(x) = Ex∼P [P (x)]− Ex∼P [Q(x)]

• Is Asymmetric:

DKL(P ‖Q) 6= DKL(Q ‖P )

• Satisfy Gibbs inequality: DKL(P ‖Q) ≥ 0, with equality happens
iff P ≡ Q
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Review: Information Theory

• Cross-Entropy of P and Q over the same set:

H(P,Q) = −
∑
x∼P

P (x) logQ(x) = −Ex∼P [logQ(x)]

• Relation to relative entropy:

H(P,Q) = H(P ) + DKL(P ‖Q)

• Let P be the ground-truth distribution, and Q be the predicted
distribution
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Cross-Entropy Loss

• L(p̂,y) = H(y, p̂y) = −y log p̂y

◦ One of the most important loss
functions of deep learning, and
classification in general.

◦ L is mall when p̂y is large, i.e.
model is more confident

◦ But L is always positive
◦ When p̂y is large, p̂ 6=y are small
◦ Making more probabilistic sense
◦ Differentiable. Recall
p̂i = exp {`i}/

∑
j exp {`j}

. Important for learning.
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