11-695: AI Engineering ML Reivews

LTI/SCS

Spring 2020

LTI/SCS

11-695: AI Engineering

Spring 2020 1 / 27

1 The Learning Problem

2 Data for Supervised Learning

3 Learning Models

4 Error and Loss Function

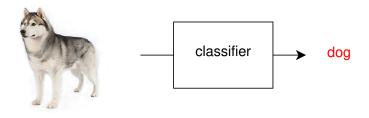
LTI/SCS

11-695: AI Engineering

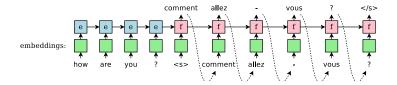
Spring 2020 2 / 27

Example: Classification

- Find a function $\mathbf{y} = \mathbf{f}(\mathbf{x})$
 - \circ **x**: an image
 - y: dog, cat, bird, car, etc.



- Find a function $\mathbf{y} = \mathbf{f}(\mathbf{x})$
 - $\circ~\mathbf{x}:$ an English sentence
 - $\circ~{\bf y}:$ an French sentence



How to Find the Function (or Model) f?^{Carnegie Mellon}

- An optimization problem: find **f** that minimizes the errors towards a defined an objective function
- Learn from data given
- In many cases, with knowledge/prior/bias about the nature of
 - Data: text, videos, images, ...
 - Expert knowledge: NLP, Medicine, ... For example, to guide the models.
 - o ...

How to Model f?

- Parametric:
 - $\circ~$ Believe that a fixed param $\mathbf{W}\sim \Omega$ is enough to represent \mathbf{f} in any case
 - The param space Ω is well-defined, *e.g.* $\mathbb{R}^{200 \times 10}$
 - $\circ~$ Choose a learning method, e.g. MLE, MAP, ..., to learn ${\bf W}$
 - Simple: only estimate params, but we have to inject our bias about data
- Nonparametric:
 - $\circ \ f \sim \mathbb{F}, \, \text{a function space}$
 - $\circ~$ It has params, but infinite of them
 - Number of params can change when data change
 - Make no assumption about data, but more complicated because we have to estimate the model, and params of that model
 - More flexible, but a caveat: need to make model assumption

LTI/SCS

11-695: AI Engineering

Spring 2020 6 / 27

① The Learning Problem

2 Data for Supervised Learning

3 Learning Models

4 Error and Loss Function

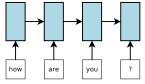
LTI/SCS

11-695: AI Engineering

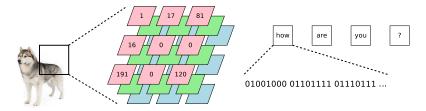
Spring 2020 7 / 27

Data for Supervised Learning

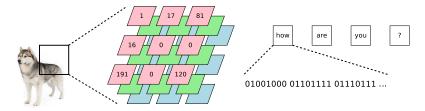
- Pairs of (\mathbf{x}, \mathbf{y}) : $\mathbb{D} = \{(\mathbf{x}^{(1)}, \mathbf{y}^{(1)}), (\mathbf{x}^{(2)}, \mathbf{y}^{(2)}), \dots, (\mathbf{x}^{(n)}, \mathbf{y}^{(n)})\}$
- Each $\mathbf{x}^{(i)}$ is called a *data point*
- Each $\mathbf{y}^{(i)}$ is called a *label*
- $\mathbf{x}^{(i)}$ and $\mathbf{y}^{(i)}$ can be anything



• Computers don't "see" things like we do



• Computers don't "see" things like we do



• ... so it's hard to make them think like we do

LTI/SCS

11-695: AI Engineering

Spring 2020 9 / 27

- Label **y** is in a discrete set $C = \{1, 2, ..., |C|\}$
 - *Classification* problems

- Label **y** is in a discrete set $C = \{1, 2, ..., |C|\}$
 - \circ Classification problems
- Label **y** is in a "continuous" set, $e.g. \ \mathbf{y} \in [0, 1]$
 - *Regression* problems

- Label **y** is in a discrete set $C = \{1, 2, ..., |C|\}$
 - \circ Classification problems
- Label **y** is in a "continuous" set, $e.g. \mathbf{y} \in [0, 1]$
 - \circ Regression problems
- Label \mathbf{y} is has some self-dependencies, *e.g.* a sentence in French
 - Structured prediction problems

- Label **y** is in a discrete set $C = \{1, 2, ..., |C|\}$
 - \circ Classification problems
- Label **y** is in a "continuous" set, $e.g. \mathbf{y} \in [0, 1]$
 - \circ Regression problems
- Label y is has some self-dependencies, *e.g.* a sentence in French
 Structured prediction problems
- Why learn these?
 - The types of problems you tackle (loosely) tell you how to design the learning models.

LTI/SCS

① The Learning Problem

2 Data for Supervised Learning

3 Learning Models

4 Error and Loss Function

LTI/SCS

11-695: AI Engineering

Spring 2020 11 / 27

- Data $\mathbb{D} = \{(\mathbf{x}^{(1)}, \mathbf{y}^{(1)}), (\mathbf{x}^{(2)}, \mathbf{y}^{(2)}), \dots, (\mathbf{x}^{(n)}, \mathbf{y}^{(n)})\}$
- Objective: find parameter ${f W}$ that best fits data
- Each model has its own definition of "best fits"

Maximum Likelihood Estimation (MLE)^{Carnegie Mellon}

- Goal: Maximize probability of data given params $P(\mathbb{D} \mid \theta)$, *a.k.a* likelihood of *the params*
- Normally we deal with log of this likelihood

$$\mathcal{L}(\theta) = \log P(\mathbb{D} \mid \theta) = \log \prod_{i=1}^{n} P(\mathbf{x}^{(i)} \mid \theta) = \sum_{i=1}^{n} \log P(\mathbf{x}^{(i)} \mid \theta)$$

• MLE estimator is:

$$\hat{\theta}_{\text{MLE}} = \underset{\theta}{\operatorname{argmax}} \mathcal{L}(\theta) = \underset{\theta}{\operatorname{argmax}} \sum_{i=1}^{n} log P(\mathbf{x}^{(i)} | \theta)$$

LTI/SCS

Maximum-A-Posteriori (MAP)

• Goal: Maximize probability of posterior of params given data

$$\underbrace{P(\theta \mid \mathbb{D})}_{\text{posterior}} = \frac{P(\theta) \times P(\mathbb{D} \mid \theta)}{P(\mathbb{D})} \propto \underbrace{P(\theta)}_{\text{prior}} \times \underbrace{P(\mathbb{D} \mid \theta)}_{\text{likelihood}}$$

• Same as MLE, normally we deal with log of this posterior

$$\log P(\theta \,|\, \mathbb{D}) \propto \log P(\theta) \,+\, \log P(\mathbb{D} \,|\, \theta)$$

• MAP estimator is:

$$\hat{\theta}_{\text{MAP}} = \underset{\theta}{\operatorname{argmax}} \log P(\theta \,|\, \mathbb{D}) = \underset{\theta}{\operatorname{argmax}} \left(\log P(\theta) \,+ \underbrace{\log P(\mathbb{D} \,|\, \theta)}_{\text{loglikelihood}} \right)$$

LTI/SCS

A Classic Linear Regression Example

- Linear Regression model: $\mathbf{y} = \mathbf{f}(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + \epsilon$ where $\epsilon \sim \mathbf{N}(\mathbf{0}, \sigma^2)$
- Each *i.i.d* sample:

$$P(y^{(i)} | x^{(i)}, \mathbf{w}) = \mathbf{N}(y^{(i)} | \mathbf{w}^T x^{(i)}, \sigma^2)$$

= $\frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(y^{(i)} - \mathbf{w}^T x^{(i)})^2}{2\sigma^2}\right)$

Log Likelihood

$$\mathcal{L}(\mathbf{w}) = \sum_{i=1}^{n} \left(-\frac{1}{2} \log(2\pi\sigma^2) - \frac{(y^{(i)} - \mathbf{w}^T x^{(i)})^2}{2\sigma^2} \right)$$

LTI/SCS

• MLE estimator

$$\hat{\mathbf{w}}_{MLE} = \underset{\mathbf{w}}{\operatorname{argmin}} \frac{1}{2\sigma^2} \sum_{i=1}^{n} (y^{(i)} - \mathbf{w}^T x^{(i)})^2$$

• With prior $\mathbf{w} \sim \mathbf{N}(\mathbf{0}, \lambda^{-1}\mathbf{I}) = \frac{1}{(2\pi)^{D/2}} \exp(-\frac{\lambda}{2}\mathbf{w}^T \mathbf{w})$ then MAP estimator

$$\hat{\mathbf{w}}_{MAP} = \operatorname*{argmin}_{\mathbf{w}} \frac{1}{2\sigma^2} \sum_{i=1}^{n} (y^{(i)} - \mathbf{w}^T x^{(i)})^2 + \frac{\lambda}{2} \mathbf{w}^T \mathbf{w}$$

LTI/SCS

A Classic Logistic Regression Example

- Binary classification with labels y ∈ {−1, 1} and logistic classification function: sigmoid(x) = 1/(1 + exp(-x))
- Log Likelihood

$$\mathcal{L}(\mathbf{w}) = \sum_{i=1}^{n} -\log\left(1 + \exp(-y^{(i)}\mathbf{w}^{T}x^{(i)}\right)$$

• MLE estimator

$$\hat{\mathbf{w}}_{MLE} = \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{i=1}^{n} \log \left(1 + \exp(-y^{(i)} \mathbf{w}^{T} x^{(i)}) \right)$$

• With the same prior for **w**, MAP estimator:

$$\hat{\mathbf{w}}_{MAP} = \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{i=1}^{n} \log \left(1 + \exp(-y^{(i)} \mathbf{w}^{T} x^{(i)}) + \frac{\lambda}{2} \mathbf{w}^{T} \mathbf{w} \right)$$

LTI/SCS

11-695: AI Engineering

Spring 2020 17 / 27

① The Learning Problem

2 Data for Supervised Learning

3 Learning Models

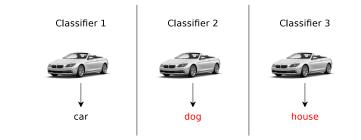
4 Error and Loss Function

LTI/SCS

11-695: AI Engineering

Spring 2020 18 / 27

Loss Function

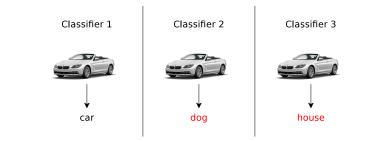


• Notations:

- **x** is your data; **y** is your label;
- $\circ~\mathbf{f}$ is your model; θ is your parameter;
- $\hat{\mathbf{y}} = \mathbf{f}(\mathbf{x}; \theta)$ is your *empirical prediction*.

LTI/SCS

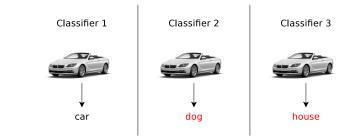
Loss Function



• Notations:

- $\circ~{\bf x}$ is your data; ${\bf y}$ is your label;
- **f** is your model; θ is your parameter;
- $\hat{\mathbf{y}} = \mathbf{f}(\mathbf{x}; \theta)$ is your *empirical prediction*.
- Loss function: $\mathcal{L}(\mathbf{y}, \hat{\mathbf{y}}) = \mathcal{L}(\mathbf{y}, \mathbf{f}(\mathbf{x}, \theta))$

Loss Function



• Notations:

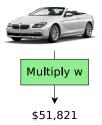
- $\circ~{\bf x}$ is your data; ${\bf y}$ is your label;
- **f** is your model; θ is your parameter;
- $\hat{\mathbf{y}} = \mathbf{f}(\mathbf{x}; \theta)$ is your *empirical prediction*.
- Loss function: $\mathcal{L}(\mathbf{y}, \hat{\mathbf{y}}) = \mathcal{L}(\mathbf{y}, \mathbf{f}(\mathbf{x}, \theta))$
 - How "off" is **y** from $\hat{\mathbf{y}} = \mathbf{f}(\mathbf{x}; \theta)$

LTI/SCS

- Data: image of a car $\mathbf{x} \in \mathbb{R}^{3 \times 512 \times 512}$
- Label: cost of the car \mathbf{x} , namely $\mathbf{y} \in \mathbb{R}$
- Linear regression:
 - Parameters: $\theta = \{ \mathbf{w} \in \mathbb{R}^{786432 \times 1} \}$, where $786432 = 3 \times 512 \times 512$.

•
$$\mathbf{x}_1 = \text{reshape}(\mathbf{x}, [1, 786432])$$

$$\circ \ \hat{\mathbf{y}} = \mathbf{x}_1 \cdot \mathbf{w}$$

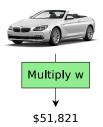


- Data: image of a car $\mathbf{x} \in \mathbb{R}^{3 \times 512 \times 512}$
- Label: cost of the car \mathbf{x} , namely $\mathbf{y} \in \mathbb{R}$
- Linear regression:
 - Parameters: $\theta = \{ \mathbf{w} \in \mathbb{R}^{786432 \times 1} \}$, where $786432 = 3 \times 512 \times 512$.

•
$$\mathbf{x}_1 = \text{reshape}(\mathbf{x}, [1, 786432])$$

$$\circ \hat{\mathbf{y}} = \mathbf{x}_1 \cdot \mathbf{w}$$

• $\mathcal{L}(\mathbf{y}, \hat{\mathbf{y}}) = (\hat{\mathbf{y}} - \mathbf{y})^2$ is called the ℓ_2 -loss

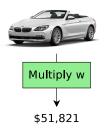


- Data: image of a car $\mathbf{x} \in \mathbb{R}^{3 \times 512 \times 512}$
- Label: cost of the car \mathbf{x} , namely $\mathbf{y} \in \mathbb{R}$
- Linear regression:
 - Parameters: $\theta = \{ \mathbf{w} \in \mathbb{R}^{786432 \times 1} \}$, where $786432 = 3 \times 512 \times 512$.

•
$$\mathbf{x}_1 = \text{reshape}(\mathbf{x}, [1, 786432])$$

$$\circ \hat{\mathbf{y}} = \mathbf{x}_1 \cdot \mathbf{w}$$

- $\mathcal{L}(\mathbf{y}, \hat{\mathbf{y}}) = (\hat{\mathbf{y}} \mathbf{y})^2$ is called the ℓ_2 -loss
- $\mathcal{L}(\mathbf{y}, \hat{\mathbf{y}}) = |\hat{\mathbf{y}} \mathbf{y}|$ is called the ℓ_1 -loss

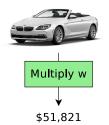


- Data: image of a car $\mathbf{x} \in \mathbb{R}^{3 \times 512 \times 512}$
- Label: cost of the car \mathbf{x} , namely $\mathbf{y} \in \mathbb{R}$
- Linear regression:
 - Parameters: $\theta = \{ \mathbf{w} \in \mathbb{R}^{786432 \times 1} \}$, where $786432 = 3 \times 512 \times 512$.

•
$$\mathbf{x}_1 = \text{reshape}(\mathbf{x}, [1, 786432])$$

$$\circ \hat{\mathbf{y}} = \mathbf{x}_1 \cdot \mathbf{w}$$

- $\mathcal{L}(\mathbf{y}, \hat{\mathbf{y}}) = (\hat{\mathbf{y}} \mathbf{y})^2$ is called the ℓ_2 -loss
- $\mathcal{L}(\mathbf{y}, \hat{\mathbf{y}}) = |\hat{\mathbf{y}} \mathbf{y}|$ is called the ℓ_1 -loss
- Do we have other options of losses?



Case Study 2: Image classification

- Data: $\mathbf{x} \in \mathbb{R}^{3 \times 32 \times 32}$
- Label: $\mathbf{y} \in \{ \text{dog}, \text{cat}, \text{house}, \text{car}, \text{flower} \}$

• For ease: $\mathbf{y} \in \{1, 2, 3, 4, 5\}$

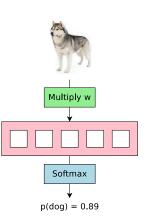
• Softmax classification:

 $\circ \ell = \mathbf{x}_1 \cdot \mathbf{w}$

• Parameters: $\theta = \{ \mathbf{w} \in \mathbb{R}^{3072 \times 10} \}.$

•
$$\mathbf{x}_1 = \operatorname{reshape}(\mathbf{x}, [1, 3072])$$

•
$$\hat{p} = \operatorname{\mathbf{Prob}}\left[\mathbf{y} = i\right] = \underbrace{\frac{\exp\left\{\ell_i\right\}}{\sum_{j=1}^{5} \exp\left\{\ell_j\right\}}}_{\operatorname{soft-max}}$$



Case Study 2: Image classification

- Data: $\mathbf{x} \in \mathbb{R}^{3 \times 32 \times 32}$
- Label: $\mathbf{y} \in \{ \text{dog}, \text{cat}, \text{house}, \text{car}, \text{flower} \}$

• For ease: $\mathbf{y} \in \{1, 2, 3, 4, 5\}$

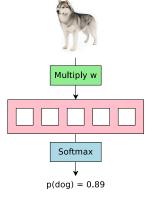
- Softmax classification:
 - Parameters: $\theta = \{ \mathbf{w} \in \mathbb{R}^{3072 \times 10} \}.$

•
$$\mathbf{x}_1 = \operatorname{reshape}(\mathbf{x}, [1, 3072])$$

•
$$\ell = \mathbf{x}_1 \cdot \mathbf{w}$$

•
$$\hat{p} = \operatorname{\mathbf{Prob}}\left[\mathbf{y}=i\right] = \underbrace{\frac{\exp\left\{\ell_i\right\}}{\sum_{j=1}^{5}\exp\left\{\ell_j\right\}}}_{\operatorname{soft-max}}$$

• Cross-entropy loss: $\mathcal{L}(\hat{p}, \mathbf{y}) = -\mathbf{y} \log \hat{p}_{\mathbf{y}}$.



- Let $X \sim P(X)$ be a random variable
- (Shannon) information content of an outcome x is $h(x) = -\log_2 P(x)$

Image credit: David Mackay

- Let $X \sim P(X)$ be a random variable
- (Shannon) information content of an outcome x is $h(x) = -\log_2 P(x)$
- In: bits/nats/shannons/dits/bans/hartleys

Image credit: David Mackay

- Let $X \sim P(X)$ be a random variable
- (Shannon) information content of an outcome x is $h(x) = -\log_2 P(x)$
- In: bits/nats/shannons/dits/bans/hartleys
- Measure the "uncertainty" of an outcome

Image credit: David Mackay

Review: Information Theory

i	a_i	p_i	$h(p_i)$
1	a	.0575	4.1
2	b	.0128	6.3
3	с	.0263	5.2
4	d	.0285	5.1
5	е	.0913	3.5
6	f	.0173	5.9
7	g	.0133	6.2
8	h	.0313	5.0
9	i	.0599	4.1
10	j	.0006	10.7
11	k	.0084	6.9
12	1	.0335	4.9
13	m	.0235	5.4
14	n	.0596	4.1
15	0	.0689	3.9
16	р	.0192	5.7
17	q	.0008	10.3
18	r	.0508	4.3
19	s	.0567	4.1
20	t	.0706	3.8
21	u	.0334	4.9
22	v	.0069	7.2
23	w	.0119	6.4
24	х	.0073	7.1
25	у	.0164	5.9
26	z	.0007	10.4
27	-	.1928	2.4
$\sum_{i} p_i \log_2 \frac{1}{p_i} \qquad 4.1$			

- Let $X \sim P(X)$ be a random variable
- (Shannon) information content of an outcome x is $h(x) = -\log_2 P(x)$
- In: bits/nats/shannons/dits/bans/hartleys
- Measure the "uncertainty" of an outcome
- Entropy of a set S is the average information content:

$$\begin{split} \mathbf{H}(X) &= \sum_{x \in S} -P(x) \log P(x) \\ &= -\mathbb{E}_{x \sim P}[logP(x)] \end{split}$$

Image credit: David Mackay

LTI/SCS

11-695: AI Engineering

Spring 2020 22 / 27

Review: Information Theory

• Joint Entropy of X, Y is

$$H(X,Y) = -\sum_{x,y} P(x,y) \log P(x,y)$$

• Conditional entropy

$$\mathbf{H}(X|Y) = -\sum_{y} \mathbf{H}(X|Y=y) P(Y=y) = -\sum_{x,y} P(x,y) \log P(x|y)$$

• Chain rule:

$$\mathrm{H}(X|Y) = \mathrm{H}(X,Y) - \mathrm{H}(Y)$$

• Bayes' rule:

$$H(Y|X) = H(X|Y) - H(X) + H(Y)$$

LTI/SCS

11-695: AI Engineering

Spring 2020 23 / 27

• Mutual Information (Information gain) of X and Y:

$$I(X,Y) = \sum_{x,y} P(x,y) \log \frac{P(x,y)}{P(x)P(y)}$$

• Relation to conditional entropy:

$$I(X, Y) = H(X) - H(X|Y)$$

= H(Y) - H(Y|X)
= H(X) + H(Y) - H(X, Y)

• If X, Y are independent, we have:

$$I(X, Y) = 0$$
$$H(X|Y) = H(X)$$
$$H(X, Y) = H(X) + H(Y)$$

LTI/SCS

11-695: AI Engineering

Spring 2020 24 / 27

• Relative Entropy or Kullback-Leibler (KL) divergence of 2 distributions P(x) and Q(x) over the same set is:

$$\mathbf{D}_{KL}(P \parallel Q) = \sum_{x} P(x) \log \frac{P(x)}{Q(x)} = \mathbb{E}_{x \sim P}[P(x)] - \mathbb{E}_{x \sim P}[Q(x)]$$

• Is Asymmetric:

$$\mathbf{D}_{KL}(P \parallel Q) \neq \mathbf{D}_{KL}(Q \parallel P)$$

• Satisfy Gibbs inequality: $\mathbf{D}_{KL}(P \parallel Q) \ge 0$, with equality happens iff $P \equiv Q$

LTI/SCS

• Cross-Entropy of P and Q over the same set:

$$H(P,Q) = -\sum_{x \sim P} P(x) \log Q(x) = -\mathbb{E}_{x \sim P}[\log Q(x)]$$

• Relation to relative entropy:

$$\mathrm{H}(P,Q) = \mathrm{H}(P) + \mathbf{D}_{KL}(P \parallel Q)$$

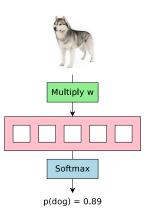
• Let P be the ground-truth distribution, and Q be the predicted distribution

LTI/SCS

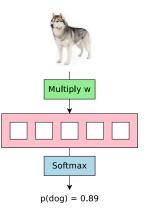
11-695: AI Engineering

Spring 2020 26 / 27

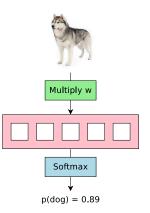
- $\mathcal{L}(\hat{p}, \mathbf{y}) = \mathbf{H}(y, \hat{p}_{\mathbf{y}}) = -\mathbf{y} \log \hat{p}_{\mathbf{y}}$
 - One of the most important loss functions of deep learning, and classification in general.



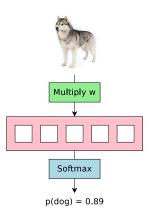
- $\mathcal{L}(\hat{p}, \mathbf{y}) = \mathbf{H}(y, \hat{p}_{\mathbf{y}}) = -\mathbf{y} \log \hat{p}_{\mathbf{y}}$
 - One of the most important loss functions of deep learning, and classification in general.
 - \mathcal{L} is mall when $\hat{p}_{\mathbf{y}}$ is large, i.e. model is more confident



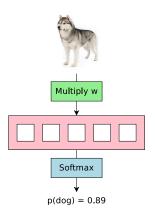
- $\mathcal{L}(\hat{p}, \mathbf{y}) = \mathbf{H}(y, \hat{p}_{\mathbf{y}}) = -\mathbf{y} \log \hat{p}_{\mathbf{y}}$
 - One of the most important loss functions of deep learning, and classification in general.
 - \mathcal{L} is mall when $\hat{p}_{\mathbf{y}}$ is large, i.e. model is more confident
 - \circ But \mathcal{L} is always positive



- $\mathcal{L}(\hat{p}, \mathbf{y}) = \mathbf{H}(y, \hat{p}_{\mathbf{y}}) = -\mathbf{y} \log \hat{p}_{\mathbf{y}}$
 - One of the most important loss functions of deep learning, and classification in general.
 - \mathcal{L} is mall when $\hat{p}_{\mathbf{y}}$ is large, i.e. model is more confident
 - $\circ~$ But ${\cal L}$ is always positive
 - $\circ~$ When $\hat{p}_{\mathbf{y}}$ is large, $\hat{p}_{\neq \mathbf{y}}$ are small



- $\mathcal{L}(\hat{p}, \mathbf{y}) = \mathbf{H}(y, \hat{p}_{\mathbf{y}}) = -\mathbf{y} \log \hat{p}_{\mathbf{y}}$
 - One of the most important loss functions of deep learning, and classification in general.
 - \mathcal{L} is mall when $\hat{p}_{\mathbf{y}}$ is large, i.e. model is more confident
 - $\circ~$ But ${\cal L}$ is always positive
 - $\circ~$ When $\hat{p}_{\mathbf{y}}$ is large, $\hat{p}_{\neq \mathbf{y}}$ are small
 - Making more probabilistic sense



Cross-Entropy Loss

• $\mathcal{L}(\hat{p}, \mathbf{y}) = \mathbf{H}(y, \hat{p}_{\mathbf{y}}) = -\mathbf{y} \log \hat{p}_{\mathbf{y}}$

- One of the most important loss functions of deep learning, and classification in general.
- \mathcal{L} is mall when $\hat{p}_{\mathbf{y}}$ is large, i.e. model is more confident
- \circ But \mathcal{L} is always positive
- $\circ~$ When $\hat{p}_{\mathbf{y}}$ is large, $\hat{p}_{\neq \mathbf{y}}$ are small
- Making more probabilistic sense
- Differentiable. Recall

$$\hat{p}_i = \exp\left\{\ell_i\right\} / \sum_j \exp\left\{\ell_j\right\}$$

 $\triangleright~$ Important for learning.

