11-695 Assignment 3 Distributed SVRG

11-695: Al Engineering
Assignment 3: Distributed Optimization

Spring 2020

Abstract

In this assignment, you will implement a distributed optimization algorithm in Pytorch [Paszke
et al., 2017]. Although the distributed environment required is a single machine with many parallel
processes, the assignment will help you understand better how to implement a distributed program
in practice and evaluate related overheads. The starter code is provided for you, with all the data
loading mechanisms and training driver implemented. Your job is to understand the starter code
and implement the correct training routine for the SVRG algorithm [Johnson and Zhang, 2013] in
distributed mode, and then compare it with the distributed SGD.

1 Code and Dataset

Install Pytorch (of version at least 1.0 and recommended 1.4) If you have not already, please
navigate to Pytorch’s site and follow their instructions to install the framework. The instructions are
at

https://pytorch.org

This assignment only requires you to use CPU, but you can also install the GPU version with no harm.
As in the previous assignments, you can quickly use an AWS AMI for quick and convenient setup.

Datasets. There are 2 datasets for this assignment. One is MNIST, which will be automatically
downloaded and processed for you. The other is the abalone dataset from the UCI repository'. The
driver for this dataset is provided to you, so you can focus completely on the SVRG algorithm.

Starter code. The starter code for your project is available at
http://aieng.cs.cmu.edu/assignment.html

After downloading and unzipping the code and the data, you can navigate to your code in the
folder src. Same as the last assignment, you will see the TODOs and hints which suggest what you
should or should not do. You will be mainly working the file d_svrg.py.

Compared to the previous assignments, this one is less intensive in terms of coding, but requires
you to thoroughly understand the algorithm and how to do the communication in a distributed setting
first. After that, only about less than 100 lines of code (excluding bells-and-whistles ones) are needed
to complete this assignment.

Ihttp://archive.ics.uci.edu/ml/index.php


https://pytorch.org
http://aieng.cs.cmu.edu/assignment.html
http://archive.ics.uci.edu/ml/index.php

SVRG code structure. First, you need to understand the structure of the algorithm illustrated
in Figure 1. Our implementation uses 2 same models (having independent weights, of course) and 2
separate optimizers respectively.

About distributed manifestation of this algorithm in d_svrg.py, we select the node with rank 0
to be the parameter server, and also a client node itself. Likewise, rank-0 node will be responsible
for gathering all gradients information, as well as other statistics such as loss values and accuracies.
You might find this one different from what we studied in class but there is no contradiction at all.
Nonetheless, if you find this setting troublesome, we would encourage you to review the provided
distributed SGD implementation carefully before moving on.

Next, if you take a closer look at the SVRG algorithm, the main communication happens when
you switch from the outer loop (indexed by s) to the inner loop (indexed by t) and vice versa. For
each time of such switch, the communication has to happen between 2 models. The communication
is, however, more complicated when you might need point-to-point exchange between the randomly
chosen node and the master rank-0 node. If by any reason it is difficult to debug or implement, you
can simply use a collective operation, e.g. all_reduce instead of reduce. In practice, however, it is
not always the case that client nodes can contact with each other due to privacy restriction, which we
assume not to have here.

Procedure SVRG
Parameters update frequency m and learning rate 7
Initialize w,
Iterate: fors =1,2,...

w = "I)s—l

po= % 22;1 V‘/’z(w)

Wo = w

Iterate: fort =1,2,...,m

Randomly pick i; € {1,...,n} and update weight
wy = w1 — NV, (we—1) — Vb, (@) + i)

end

option I: set ws = wo,

option II: set Wy = w; for randomly chosen ¢ € {0,...,m — 1}
end

Figure 1: The original SVRG algorithm [Johnson and Zhang, 2013]. Legend: s denotes the incremental
number of epochs, m is the total number of inner loops per epoch, global weights at epoch s are denoted
as ws while local (to the node) weights are w; for inner loop ¢.

2 Requirements

The only entry point of the program is in the file train.py that will call relevant modules. It is your
responsibility to read the code and figure out all the relevant points. We also provided some TODOs
and hints, however, to make your tasks less challenging.

First, you need to understand the SVRG algorithm, which might be confusing at first but in fact
not so complicated. See the legend carefully in Figure 1 for details, and pay a careful attention to the
global (outer-loop) and local (inner-loop) variables.

Your jobs are as follows:

1. Finish distributed SVRG on d_svrg.py: we have provided the guidelines along the code
with TODOs items so that you can follow and finish conveniently.



2. Consistency of the initial loss It is required for you to have the training loss curve plots,
in which the losses of SGD and SVRG both start at the same point. The reason is that in
optimization, people care about how low the algorithm can bring down this loss, and so make
them start at the same point will make fair comparisons. As a result, for this task, you have
to implement a separate operation where you initialize the weights for each of your models, and
save it into disks. To make it convenient for you, we have already provided the code to load
those weights (ee init_model() in utils.py for more detail). We expect you to store your
weights in the folder weights, but you can change however you want (and make sure to change
the respective parts in the code to reflect this change). In short, you can implement this in the
provided file create_init_weights_for_all.py or any where you want.

3. Evaluate your distributed SVRG. In evaluation, you need to test it with different settings,
such as number of nodes, number of batches, ... It is required that you have to compare it with
the distributed SGD algorithm for each setting you consider. To make it convenient for you,
we already set up the output folder for you at the same level as src and data, with the form
output_xx in the code.

Implementation Note: You don’t have to follow our implementation structure; you can do it your
way, even if you want to wipe out everything and re-implement it. The only requirement if you decide
to re-implement, however, is that it has to be distributed with multiple nodes and has to include
communications of either point-to-point or collective types to exchange gradients and loss/accuracies.

Hint: Many functions in utils.py should be handy.

3 Assessment

This assignment tests the concepts rather than implementation, so we do not require difficult baselines
for you. Passing those simple baselines will hence earn you a complete 100 points. In detail, you
are only required to pass the following baselines for your best model (but remember to record the
hyper-parameters for this best model in your report):

1. MNIST: 91% test accuracy for SVRG (yours must be higher).
2. Abalone: 30.0 test loss for SVRG (yours must be lower).

You can run as many epochs as you want to pass those baselines. If by any reason you cannot pass
any baseline, we will deduct points based on the percentage of the gap from that specific baseline.

Extra credits: We will provide (up to maximum 10) bonus points in all possible categories combined
if you can do extra work as—but not limited to—follows:

e Re-implement SVRG completely your way, which is different from the provided one (of course
you also have to pass the baselines)

e Explore other algorithms besides SGD and SVRG. The other similar versions of them are not
counted, e.g. Adam or Adagrad for SGD, to name a few. Check with the course staff first if you
are not sure about this.

e Migrate both SGD and SVRG to GPU, or still with CPU but evaluate it with multiple physical
nodes (where you have to re-make the initialization of the cluster environment properly).



4 Reports

As usual, you are required to submit your log files of training, your statistics on any method on any
dataset that you work on. The limit is maximum 2 pages. We will give more credits if you have
a high-quality, well-written one with exhaustive explorations with different settings, accompanied by
your reasoning and analyses.

5 Gradings

The grading breakdowns are as follows with totally 110 points:
1. Pass the baseline for MNIST for SVRG: 40 points
2. Pass the baseline for Abalone for SVRG: 40 points
3. Report: 20 points

4. Extra credits: up to 10 points as desribed above in section 3 and 4. As usual, we will not limit
any creative ideas from you; feel free to apply any idea that you see fit. If the idea is interesting,
negative results would be interesting too (although you are required to provide your reasoning
about such results).

6 Submission

All submissions must be made to Canvas individually, including:
e Your folder of code excluding data files or folder.
e Your real log of running each of your models, and also the output directories.
e Your report.

Note: Your code must be runnable directly with Python3 and Pytorch (of version at least 1.0). Any
extra packages might be super useful but is prohibited, and should not be needed. But if you insist
to use any of new packages on the internet, check with the instructors first. Furthermore, if your code
has a special instruction to run, please detail it. We will give you zero for each part where your code
is not runnable. The TAs will be running each of your code so please be considerate to them as well.

7 Academic Integrity.
As usual, you are encouraged to discuss with your friends and the instructors. Anything they tell you,
you can use. However, looking at other people’s codes should not happen at all cost.

References

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. In Advances in neural information processing systems, pages 315-323, 2013.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming
Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in pytorch. 2017.



Revision

1. Apr 05: First release.



	Code and Dataset
	Requirements
	Assessment
	Reports
	Gradings
	Submission
	Academic Integrity.

