
11-695 Assignment 2 Machine Translation

11-695: AI Engineering
Assignment 2: Neural Machine Translation

Spring 2020

Abstract

In this assignment, you will implement a tiny neural machine translation system in Tensor-
Flow [Abadi et al., 2015]. The starter code is provided for you, with all the data loading mecha-
nisms and training driver implemented. Your job is to understand the starter code and implement a
sequence-to-sequence (Seq2Seq) model [Sutskever et al., 2014], and potentially with attention [Bah-
danau et al., 2015, Luong et al., 2015], to translate French (target) into English (source). It
is required that your implementation works on batches of sentences for it can significantly speed
up deep learning algorithms and so is important in practice.

1 Code and Dataset
Install TensorFlow (of the required version at least 2.0). If you have not already, please
navigate to TensorFlow’s site and follow their instructions to install the framework. The instructions
are at

https://www.tensorflow.org/install

Their instructions should be sufficient to install TensorFlow and all of its dependencies on your system.
It is possible to complete this assignment without using any GPU, so you do not need to install
CUDA or anything related to GPU programming. However, if you wish to, you are encouraged to
install TensorFlow GPU (See “Additional setup” section from the link above), which will make your
implementation much faster, hence saving much of your time. Otherwise, another fast and convenient
solution is to use some public deep learning AMI on AWS.

Datasets. There are 2 datasets provided to you along with the code file: Toy Reverse and English-
French.

1. Toy Reverse1: In practice, it’s always a good idea to start with some toy dataset. This dataset
contains 10K training pairs and 2K validation ones. Each single line contains a pair: source
sentence and target sentence (which is the source being reversed). The Vocabulary size is only 24,
thus this dataset should be a good validation mechanism of your implementation. Consequently,
we recommend you play with this dataset first to make sure your model works well before moving
on. Furthermore, a part of your grade is also evaluated on this dataset. Set FLAGS.is toy to
True and FLAGS.data path to ’toy-reverse’ to use this dataset.

2. English-French: This dataset has the similar format to Toy Reverse but for pairs of English and
French sentences. . It is extracted from: http://www.manythings.org/anki/. Set FLAGS.is toy
to False and FLAGS.data path to ’en-fr’ to use this dataset.

1https://google.github.io/seq2seq/

https://www.tensorflow.org/install
http://www.manythings.org/anki/
https://google.github.io/seq2seq/

Starter code. The starter code for your project is available at

http://aieng.cs.cmu.edu/assignment.html

After downloading and unzipping the code and the data, you can navigate to your code directories.
Same as the last assignment, you will see the TODOs and hints which suggest what you should or should
not do. You will be mainly working one 2 files: train.py and models.py and no need to change the
others.

Unlike the first assignment, this one is a little bit more challenging in the perspective that it does
not provide you a runnable dummy codebase which you can run the pipeline end-to-end without doing
anything.

2 Your Jobs
The entry point of the program is in the file train.py. From this file, relevant modules will be called.
It is your responsibility to read the code and figure out all the relevant points. But as said above, we
already provided some TODOs and hints, however, to make your tasks less challenging.

You are required to implement and train a Seq2Seq model on top of the given code base. The
breakdown of the your work is as follows:

1. Implement a Seq2Seq model that runs in batches. We already did the padding and batching for
you so you just focus more on the model itself and how to train it properly w.r.t what you have
learned in class. Those are the breakdown details:

• models.py: You are required to implement the Encoder and Decoder part of the Seq2Seq,
extended from tf.keras.Layers and tf library in general. There are 4 main suggestions
here:
(a) Unidirectional RNN implementation for both Encoder and Decoder
(b) Attention model: this one is the most tricky part so implement carefully. After that,

everything is much simpler.
(c) Bidirectiontal RNNs. You can use keras.Bidirectional wrapper. However if you create

multilayer RNN and use the wrapper, forward and backward output from previous layer
are combined according to your merge mode argument and passed to next layer, which
is different from pass forward/backward hidden state separately to forward/backward
RNN at next layer

(d) Stacked (multilayer) RNNs
Note: Submit the model that has best performance is enough. You are not required to
submit 4 models. However, it is recommended that you can implement Attention model(s)
[Bahdanau et al., 2015, Luong et al., 2015] which will greatly affect final results. In our
code base, we implemetned Bahdanau attention with modification that we use hidden state
from t instead of t-1 to calculate attention score. You can implement any type of want and
modify our code structure accordingly. We recommend you to investigate different attention
types and try them out as you may find inconsistencies in attention implementation on the
internet.

• train.py: There are two main jobs here. First, you are required to implement the Teacher-
Forcing training mechanism in the teacher forcing method. At test time, however, you
have to use evaluate method for you have no ground truths and have to live (and deal)
with your predictions.

• Evaluate your work by yourself: Periodically, the train driver saves your model and randomly
samples and presents 2 translations for you to observe the overview quality of the training
qualitatively. Furthermore, it also carries out a full test translation from target.txt and

2

http://aieng.cs.cmu.edu/assignment.html

generates a file named translated n.txt where n is the final epoch number. This operation
is usually very slow so we just set it up at the very end of the training, esp. for the English-
French dataset. Nonetheless, it is not too long for the Toy Reverse dataset and hence you can
possibly test it at the end of a single epoch or however you want (set FLAGS.translate only
to True to perform test translation). When you have the translated file(s), you can calculate
the BLEU score(s) as follow: cat translated n.txt | sacrebleu source.txt in your
dataset folder, using sacreBLEU2. The very first result of that script along with the training
perplexity scores (already implemented in the code) are what we use to grade you.

Important Note: We require you to implement Attention module manually, so if you directly
use the predefined API tf.keras.layers.Attention, we only give you 5 points (out of 15
points) in the grading rubric for the Attention part. In either way, that API is a great tool to
validate your model.

2. Train your model to achieve a reasonable performance on the given datasets. You are expected to
reports your performances on the Toy Reverse and English-French datasets. There are 2 metrics
that we use to evaluate your work:

• Perplexity. This metric measures how uncertain the model is about predicting the correct
output. Specifically, your target sentence is y = {y1, y2, ..., y|y|} ∼ p(y), then perplexity is
measured as

PPL(y) =

 |y|∏
i=1

p(yi|y<i)

− 1
|y|

= 2H(p(y)) (2.1)

• BLEU score [Papineni et al., 2002] as instructed above using sacreBLEU. Also, please print
an output file of your translation, one per row. We will compare your output with the
correct output.

3. When you run your program, there is a flag, which is is toy for you to switch between the toy
dataset and the other. Also there are many flags in the default driver that you can change w.r.t
your needs, so please make use of them accordingly before you run the first program with toy
dataset. Last, you can use the two bash scripts that we prepared, namely train toy.sh and
train fr.sh that have all flags properly set.

3 Baselines
You are required to pass the following baselines:
• Toy Reverse: With no attention, you should achieve at least BLEU 50.0 and with attention,

it should be at least BLEU 90.0. A good implementation should show that the test BLEU can
be 81.7 (no attention) and 99.9 (with attention), respectively after about 20-30 epochs.

• English-French: The baseline is BLEU 10.0 (without attention) and 20.0 (with attention). A
good implementation should have at least BLEU 26.0 (with attention) after about 10 epochs.

As usual, we urge you to start early and acquire help from the course staffs soon.

4 Reports
As usual, you are required to submit your log files of training, your statistics on any method on any
dataset that you work on. The limit is maximum 2 pages. We will give more credits if you have a high
quality one.

2https://github.com/mjpost/sacreBLEU

3

5 Gradings
The grading breakdowns are as follows with totally 100 points with 10 potential credit points:

1. Single-layer RNN without attention: 20 points

2. Attention: 15 points

3. Bidirectional RNN: 5 points

4. Stacked (multi-layer) RNN: 5 points

5. Pass the baselines of Toy Reverse (depending on whether you have attention): 20 points

6. Pass the baselines of English-French (depending on whether you have attention): 20 points

7. Report: 15 points

1 is considered passed if you already have an attention model. Submit the model that has best
performance and we will grade you accordingly.

6 Submission
All submissions must be made to Canvas individually, including:

• Your folder of code.

• Your real log of running each of your models. You can export log of running simply by using
this syntax: python3 train.py 2>&1 | tee log.txt.

• Your report.

Note: Your code must be runnable directly with Python3 and Tensorflow (of version at least 2.0).
Any extra packages might be super useful but is prohibited, and should not be needed. But if you
insist to use any of new packages on the internet, check with the instructors first. Furthermore, if your
code has a special instruction to run, please detail it. We will give you zero for each part where your
code is not runnable. The TAs will be running each of your code so please be considerate to them as
well.

7 Academic Integrity.
As usual, you are encouraged to discuss with your friends and the instructors. Anything they tell you,
you can use. However, looking at other people’s codes should not happen at all cost.

References
Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.

Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Van-
houcke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on heterogeneous
systems, 2015. URL https://www.tensorflow.org/. Software available from tensorflow.org.

4

https://www.tensorflow.org/

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. In ICLR, 2015.

Minh-Thang Luong, Hieu Pham, and Christopher D. Manning. Effective approaches to attention-based
neural machine translation. In EMNLP, 2015.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. 2002.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural networks.
In NIPS, 2014.

5

Revision
1. Mar 01: First release.

2. Mar 18: Fix some typos, grading explanation and perplexity.

3. Mar 22: Fix some unclear descriptions.

6

	Code and Dataset
	Your Jobs
	Baselines
	Reports
	Gradings
	Submission
	Academic Integrity.

